-
Notifications
You must be signed in to change notification settings - Fork 0
/
kNN.py
117 lines (106 loc) · 4.73 KB
/
kNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
import operator
import os
def createDataSet():
group = array(([1.0,1.1],[1.0,1.0],[0,0],[0,0.1]))
labels = ['A','A','B','B']
return group,labels
def classify0(idx,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(idx,(dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances =sqDiffMat.sum(axis = 1)
distances = sqDistances**0.5
sortDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines())
returnMat = zeros((numberOfLines,3))
classLabelVector =[]
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def show_data2img(DataMat,DataLabels,datatype1,datatype2):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(DataMat[:,datatype1],DataMat[:,datatype2],15.0 * array(DataLabels) , 15.0 * array(DataLabels))
plt.show()
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet)) #shape(dataSet) = 1000 , 3 # 0 , 0 , 0 .....
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals , (m,1)) #(m,1) = 1000 ,1 tile => copy minVals 1000 times
normDataSet = normDataSet / tile(ranges ,(m,1))
return normDataSet , ranges , minVals
def datingClassTest():
hotRatio = 0.99
datingDataMat , datingLabels = file2matrix('datingTestSet.txt')
normMat , ranges ,minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m * hotRatio)
errorCount = 0.0
for i in range(numTestVecs):
classfierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("No.%d the classifier came back with: %d , the real answer is : %d" %(i+1,classfierResult , datingLabels[i]))
if(classfierResult != datingLabels[i]):
errorCount += 1.0
print("the total error rate is : %f" % (errorCount / float(numTestVecs)))
def classifyPerson():
resultList = ['not at all' , 'in small doses','in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat , datingLabels = file2matrix('datingTestSet.txt')
normMat , ranges ,minVals = autoNorm(datingDataMat)
inArr = array([ffMiles , percentTats , iceCream])
classifierResult = classify0((inArr - minVals) / ranges , normMat , datingLabels , 3)
print("you will probably like this person",resultList[classifierResult - 1])
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels =[]
trainingFileList = os.listdir('/Users/leo/Desktop/python/trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range (1,m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = (fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = os.listdir('/Users/leo/Desktop/python/testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(1,mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = (fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest , trainingMat ,hwLabels ,3)
print ("the classifier came back with %s the real answer is : %s" %(classifierResult , classNumStr))
if(classifierResult != classNumStr):
errorCount +=1.0
print("\n total number of errors is %d"%errorCount)
print("\n total error rate is : %f" %(errorCount / float(mTest)))