We propose FaceFormer Emo, a Transformer-based speech to 3D face mesh model that produces highly emotional expressions from the input audio.
This work extends FaceFormer in producing realistic and expressive outputs without a large loss in lip vertex accuracy, and introduces a novel lip vertex loss function which increases the weights of the vertices nearby the lips to increase accuracy and emotion dynamics.
PyTorch implementation for the paper:
FaceFormer: Speech-Driven 3D Facial Animation with Transformers, CVPR 2022.
Yingruo Fan, Zhaojiang Lin, Jun Saito, Wenping Wang, Taku Komura
Given the raw audio input and a neutral 3D face mesh, our proposed end-to-end Transformer-based architecture, FaceFormer, can autoregressively synthesize a sequence of realistic 3D facial motions with accurate lip movements.
- Ubuntu 18.04.1
- Python 3.7
- Pytorch 1.9.0
- Check the required python packages in
requirements.txt
. - ffmpeg
- MPI-IS/mesh
Request the VOCASET data from https://voca.is.tue.mpg.de/. Place the downloaded files data_verts.npy
, raw_audio_fixed.pkl
, templates.pkl
and subj_seq_to_idx.pkl
in the folder VOCASET
. Download "FLAME_sample.ply" from voca and put it in VOCASET/templates
.
Request the BIWI dataset from Biwi 3D Audiovisual Corpus of Affective Communication. The dataset contains the following subfolders:
- 'faces' contains the binary (.vl) files for the tracked facial geometries.
- 'rigid_scans' contains the templates stored as .obj files.
- 'audio' contains audio signals stored as .wav files.
Place the folders 'faces' and 'rigid_scans' in BIWI
and place the wav files in BIWI/wav
.
Download the pretrained models from biwi.pth and vocaset.pth. Put the pretrained models under BIWI
and VOCASET
folders, respectively. Given the audio signal,
-
to animate a mesh in BIWI topology, run:
python demo.py --model_name biwi --wav_path "demo/wav/test.wav" --dataset BIWI --vertice_dim 70110 --feature_dim 128 --period 25 --fps 25 --train_subjects "F2 F3 F4 M3 M4 M5" --test_subjects "F1 F5 F6 F7 F8 M1 M2 M6" --condition M3 --subject M1
-
to animate a mesh in FLAME topology, run:
python demo.py --model_name vocaset --wav_path "demo/wav/test.wav" --dataset vocaset --vertice_dim 15069 --feature_dim 64 --period 30 --fps 30 --train_subjects "FaceTalk_170728_03272_TA FaceTalk_170904_00128_TA FaceTalk_170725_00137_TA FaceTalk_170915_00223_TA FaceTalk_170811_03274_TA FaceTalk_170913_03279_TA FaceTalk_170904_03276_TA FaceTalk_170912_03278_TA" --test_subjects "FaceTalk_170809_00138_TA FaceTalk_170731_00024_TA" --condition FaceTalk_170913_03279_TA --subject FaceTalk_170809_00138_TA
This script will automatically generate the rendered videos in the
demo/output
folder. You can also put your own test audio file (.wav format) under thedemo/wav
folder and specify the argument--wav_path "demo/wav/test.wav"
accordingly.
-
Read the vertices/audio data and convert them to .npy/.wav files stored in
vocaset/vertices_npy
andvocaset/wav
:cd VOCASET python process_voca_data.py
(WARNING: The snippet below might exhaust all memory on GPU, use 5 train_subjects for safe measure)
-
To train the model on VOCASET and obtain the results on the testing set, run:
python main.py --dataset vocaset --vertice_dim 15069 --feature_dim 64 --period 30 --train_subjects "FaceTalk_170728_03272_TA FaceTalk_170904_00128_TA FaceTalk_170725_00137_TA FaceTalk_170915_00223_TA FaceTalk_170811_03274_TA FaceTalk_170913_03279_TA FaceTalk_170904_03276_TA FaceTalk_170912_03278_TA" --val_subjects "FaceTalk_170811_03275_TA FaceTalk_170908_03277_TA" --test_subjects "FaceTalk_170809_00138_TA FaceTalk_170731_00024_TA"
The results and the trained models will be saved to
vocaset/result
andvocaset/save
.
-
To visualize the results, run:
python render.py --dataset vocaset --vertice_dim 15069 --fps 30
You can find the outputs in the
vocaset/output
folder.
We gratefully acknowledge ETHZ-CVL for providing the B3D(AC)2 database and MPI-IS for releasing the VOCASET dataset. The implementation of wav2vec2 is built upon huggingface-transformers, and the temporal bias is modified from ALiBi. We use MPI-IS/mesh for mesh processing and VOCA/rendering for rendering. We thank the authors for their excellent works. Any third-party packages are owned by their respective authors and must be used under their respective licenses.