Skip to content

lianqing11/cluster-gcn

Repository files navigation

Comp 5331 course project.


Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks Dependencies

  • Python 3.7+(for string formatting features)
  • PyTorch 1.1.0+
  • metis
  • sklearn
1) Download metis-5.1.0.tar.gz from http://glaros.dtc.umn.edu/gkhome/metis/metis/download and unpack it
2) cd metis-5.1.0
3) make config shared=1 prefix=~/.local/
4) make install
5) export METIS_DLL=~/.local/lib/libmetis.so
6) `pip install metis`

quick test to see whether you install metis correctly:

>>> import networkx as nx
>>> import metis
>>> G = metis.example_networkx()
>>> (edgecuts, parts) = metis.part_graph(G, 3)

Run experiments

For ppi dataset with gcn, mean, pooling aggregator:

sh auto_gcn_mean_pool_run_ppi.sh

For ppi dataset with lstm aggregator:

sh auto_lstm_run_ppi.sh

For ppi dataset with attention aggregator:

sh auto_attn_run_ppi.sh 

For reddit dataset with gcn, mean, pooling aggregator:

sh auto_gcn_mean_pool_run_reddit.sh

For reddit dataset with attention aggregator:

sh auto_attn_run_reddit.sh 

You can get tune the hyper-param in the script and get the result from the "log" folder.

Acknowledgements

This code is heavily borrowed from DGL's implementation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published