Skip to content

Commit 1cdcd27

Browse files
committed
change url
1 parent 0d4cf51 commit 1cdcd27

File tree

2 files changed

+4
-2
lines changed

2 files changed

+4
-2
lines changed

content/modelisation/0_preprocessing.qmd

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,8 @@ __Cet exercice est OPTIONNEL__
145145

146146
1. Télécharger et importer le shapefile [depuis ce lien](https://www2.census.gov/geo/tiger/GENZ2019/shp/cb_2019_02_sldl_500k.zip)
147147
2. Exclure les Etats suivants : "02", "69", "66", "78", "60", "72", "15"
148-
3. Importer les résultats des élections depuis [ce lien](https://raw.githubusercontent.com/tonmcg/US_County_Level_Election_Results_08-20/main/2020_US_County_Level_Presidential_Results.csv)
148+
3. Importer les résultats des élections depuis [ce lien](https://raw.githubusercontent.com/tonmcg/US_County_Level_Election_Results_08-20/master/2020_US_County_Level_Presidential_Results.csv
149+
)
149150
4. Importer les bases disponibles sur le site de l'USDA en faisant attention à renommer les variables de code FIPS de manière identique
150151
dans les 4 bases
151152
5. *Merger* ces 4 bases dans une base unique de caractéristiques socioéconomiques

content/modelisation/get_data.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,8 @@ def create_votes_dataframes():
2727
shp = shp[~shp["STATEFP"].isin(["02", "69", "66", "78", "60", "72", "15"])]
2828
shp
2929

30-
df_election = pd.read_csv("https://raw.githubusercontent.com/tonmcg/US_County_Level_Election_Results_08-20/main/2020_US_County_Level_Presidential_Results.csv")
30+
df_election = pd.read_csv("https://raw.githubusercontent.com/tonmcg/US_County_Level_Election_Results_08-20/master/2020_US_County_Level_Presidential_Results.csv
31+
")
3132
df_election.head(2)
3233
population = pd.read_excel("https://www.ers.usda.gov/webdocs/DataFiles/48747/PopulationEstimates.xls?v=290.4", header = 2).rename(columns = {"FIPStxt": "FIPS"})
3334
education = pd.read_excel("https://www.ers.usda.gov/webdocs/DataFiles/48747/Education.xls?v=290.4", header = 4).rename(columns = {"FIPS Code": "FIPS", "Area name": "Area_Name"})

0 commit comments

Comments
 (0)