This package provide one function: add_se which computes standard errors and confidence intervals for group-level effects adding up standard errors on the way.
You can install the package by running the following code in R
library(devtools)
install_github("lionel68/addSE")
The function can then be used with code looking like:
library(addSE)
?add_se
data("iris")
m <- lm(Sepal.Length ~ Species * Sepal.Width, iris)
#to get the fitted average Sepal length per species
add_se(m, "Species")
## Coef LCI UCI
##(Intercept):Speciessetosa 2.639001 1.518851 3.759152
##Speciesversicolor 3.539735 2.446018 4.633452
##Speciesvirginica 3.906836 2.764838 5.048835
#to get the fitted Sepal length ~ Sepal width slopes per species
add_se(m, name_f = "Species", name_x = "Sepal.Width")
## Coef LCI UCI
##Sepal.Width:Speciessetosa 0.6904897 0.3656651 1.015314
##Speciesversicolor:Sepal.Width 0.8650777 0.4726938 1.257462
##Speciesvirginica:Sepal.Width 0.9015345 0.5197338 1.283335
These results can then be used for plotting or reporting in result tables.
So far the following models are supported: lm, glm, glm.nb (MASS), lme (nlme), lmer (lme4), glmer (lme4), merModLmerTest (lmerTest)
Please report bugs, enhancment wishes and other errors in the issues tab.
- support for other model types
- add plot functions?
- improve documentation
- set up tests cases