Paper: https://arxiv.org/abs/2401.13858
This is the code for Graph DiT. The denoising model architecture in graph_dit/models
looks like:
All dependencies are specified in the requirements.txt
file.
This code was developed and tested with Python 3.9.16, PyTorch 2.0.0, and PyG 2.3.0, Pytorch-lightning 2.0.1.
For molecular generation evaluation, we should first install rdkit.
Then fcd_torch
: pip install fcd_torch
(https://github.com/insilicomedicine/fcd_torch).
And mini_moses
package: pip install git+https://github.com/igor-krawczuk/mini-moses
(https://github.com/igor-krawczuk/mini-moses),
We could train the model on an A6000 GPU card. Here is an example to running the code for polymer graphs:
python main.py --config-name=config.yaml \
model.ensure_connected=True \
dataset.task_name='O2-N2-CO2' \
dataset.guidance_target='O2-N2-CO2'
All default configurations can be found in configs/config.yaml
. In this example, we set model.ensure_connected=True
to ensure that all generated components are retained during graph-to-molecule conversion (see paper Section 3.2).
Other examples for small molecule generation:
python main.py --config-name=config.yaml \
dataset.task_name='bace_b' \
dataset.guidance_target='Class'
python main.py --config-name=config.yaml \
dataset.task_name='bbbp_b' \
dataset.guidance_target='p_np'
python main.py --config-name=config.yaml \
dataset.task_name='hiv_b' \
dataset.guidance_target='HIV_active'
We could generate polymer graphs by conditioning on single gas permeability.
python main.py --config-name=config.yaml \
dataset.task_name='O2' \
dataset.guidance_target='O2'
python main.py --config-name=config.yaml \
dataset.task_name='N2' \
dataset.guidance_target='N2'
python main.py --config-name=config.yaml \
dataset.task_name='CO2' \
dataset.guidance_target='CO2'
Feel free to test the code on your own dataset!
If you find this repository useful, please cite our paper:
@misc{liu2024inverse,
title={Inverse Molecular Design with Multi-Conditional Diffusion Guidance},
author={Gang Liu and Jiaxin Xu and Tengfei Luo and Meng Jiang},
year={2024},
eprint={2401.13858},
archivePrefix={arXiv},
primaryClass={cs.LG}
}