Code for the paper EXIM: A Hybrid Explicit-Implicit Representation for Text-Guided 3D Shape Generation.
Authors: Zhengzhe Liu, Jingyu Hu, Ka-Hei Hui, Xiaojuan Qi, Daniel Cohen-Or, Chi-Wing Fu
conda env create -f environment.yaml
conda activate EXIM
cd stage 2
python setup.py build_ext --inplace
cd data_processing/libmesh/
python setup.py build_ext --inplace
cd ../libvoxelize/
python setup.py build_ext --inplace
cd ../..
- Download our models and list of files.
unzip to "EXIM/data/"
cd stage1
python test_chair.py
cd ../stage2
sh test.sh
(1) Stage 1
Download the train data.
Put to "EXIM/data/"
cd stage1
python trainer_new.py
(2) Stage 2
- Download Choy et. al. rendering data and IF-Net data: 03001627.tar.gz
Put to "EXIM/data/"
cd stage2
sh train.sh
cd evaluation
Option1: Locate the interested region following Diff-Edit.
cd manipulation
python mani_diffedit.py
Option2: Locate the interested region using Interactive System (Thanks to Ruihui Li, Ka-Hei Hui, and Jingyu Hu for developing this tool).
First, run the UI-Interface
python sample_point_cloud.py
cd UI-Interface
python label_interface.py
Load a input.obj.ply Select a region you want to edit The "selection.npy" file is saved in "UI-Interface/debug/" Move the selection.npy to the "manipulation folder"
python mani_select.py
To train the manipulation model:
python seg.py
python trainer_new.py
The code is built upon Wavelet-Diffusion and DVR
If you have any questions or suggestions about this repo, please feel free to contact me (liuzhengzhelzz@gmail.com).