一.背景
阿里工作的时候是使用Blink进行流数据处理和计算,通过编写sql实现Blink的计算job,开发简单高效,产品易用。 目前尝试实现Flink产品化,类似Blink。使用SQL为统一开发规范,SQL语言的好处是:声明式,易理解,稳定可靠,自动优化。 如果采用API开发的话,最大的问题是对于job调优依赖程序员经验,比较困难,同时API开发方式侵入性太强(数据安全,集群安全等),而sql可以自动调优,避免这种问题的产生。
二.实现思路:
用户输入sql(ddl,query,dml) -> ddl对应为Flink的source和sink
-> query/dml的insert into数据处理和计算
--> 封装为对应Flink的Job:env.sqlQuery/env.sqlUpdate
--> JobGraph和对应job提交,StandaloneClusterClient.submitJob或者YarnClusterClient.runDetached
三.发布版本:
v3.0.0 待开发 使用最新发布版本的flink 1.9版本或者更高:
[flink-sql-parser] flink自带的sql解析
流批处理一体化实现
钉钉/微信告警通知
v2.0.0 2019年4月
blink-client 接口定义
blink-sql/calcite stream和batch table的sql解析
blink-libraries 自定义source, sink, side开发
blink-batch BatchTableSource和BatchTableSink
blink-stream StreamTableSource和StreamTableSink
blink-job batch/stream job 提交
SQL书写语法参考Flink issues和对应提供的doc: SQL DDL ISSUE, SQL DDL DOC。
1. 抽取sql层被流和批使用,SQL参考flink issues和对应提供的doc
2. 增加批处理开发
3. 增加维表功能
4. 升级flink版本为1.7.x
v1.0.0 2018年7月
blink-client 接口定义
blink-sqlserver stream table的sql解析
blink-job 封装为stream job
1. 实现create function
2. 实现sql开发流处理程序任务
3. 更改源码实现sql CEP
四.样例
CREATE FUNCTION demouf AS
'ambition.api.sql.function.DemoUDF'
USING JAR 'hdfs://flink/udf/jedis.jar',
JAR 'hdfs://flink/udf/customudf.jar';
CREATE TABLE kafka_source (
`date` string,
amount float,
proctime timestamp
)
with (
type=kafka,
'flink.parallelism'=1,
'kafka.topic'=topic,
'kafka.group.id'=flinks,
'kafka.enable.auto.commit'=true,
'kafka.bootstrap.servers'='localhost:9092'
);
CREATE TABLE mysql_sink (
`date` string,
amount float,
PRIMARY KEY (`date`,amount)
)
with (
type=mysql,
'mysql.connection'='localhost:3306',
'mysql.db.name'=flink,
'mysql.batch.size'=0,
'mysql.table.name'=flink_table,
'mysql.user'=root,
'mysql.pass'=root
);
CREATE VIEW view_select AS
SELECT `date`,
amount
FROM kafka_source
GROUP BY
`date`,
amount
;
INSERT INTO mysql_sink
SELECT
`date`,
sum(amount)
FROM view_select
GROUP BY
`date`
;
batch sql示例:
CREATE FUNCTION demouf AS 'ambition.api.sql.function.DemoUDF'
LIBRARY 'hdfs://flink/udf/jedis.jar','hdfs://flink/udf/customudf.jar';
CREATE SOURCE TABLE json_source (
id int,
name varchar,
`date` date ,
age int
)
with (
type=json,
'file.path'='file:///FlinkSQL/blink-job/src/test/resources/demo.json'
);
CREATE SINK TABLE csv_sink (
`date` date,
total_age int
)
with (
type=csv,
'file.path'='file:///FlinkSQL/blink-job/src/test/resources/demo_out.csv'
);
CREATE VIEW view_select as
SELECT `date`, age
FROM json_source
GROUP BY `date`,age;
INSERT INTO csv_sink
SELECT `date`, sum(age) as total_age
FROM view_select
GROUP BY `date`;
stream sql 示例:
CREATE FUNCTION demouf AS
'ambition.api.sql.function.DemoUDF'
LIBRARY 'hdfs://flink/udf/jedis.jar','hdfs://flink/udf/customudf.jar';
CREATE SOURCE TABLE kafka_source (
`date` varchar,
amount float,
proctime timestamp
)
with (
type=kafka,
'flink.parallelism'=1,
'kafka.topic'=topic,
'kafka.group.id'=flinks,
'kafka.enable.auto.commit'=true,
'kafka.bootstrap.servers'='localhost:9092'
);
CREATE SINK TABLE mysql_sink (
`date` varchar,
total_amount float,
PRIMARY KEY (`date`)
)
with (
type=mysql,
'mysql.connection'='localhost:3306',
'mysql.db.name'=flink,
'mysql.batch.size'=10,
'mysql.table.name'=flink_table,
'mysql.user'=root,
'mysql.pass'=root
);
CREATE VIEW view_select AS
SELECT `date`,
amount
FROM kafka_source
GROUP BY
`date`,
amount
;
INSERT INTO mysql_sink
SELECT
`date`,
sum(amount) as total_amount
FROM view_select
GROUP BY
`date`
;
五.代码关注