详情见 Assignment #1
推荐使用 Anaconda 新建环境,使用 pip3 install -r requirements.txt
进行环境配置。
一些可能出现的错误:
-
在 jupyter notebook 中启用 conda 环境,使用如下命令可看到切换内核选项:
conda install nb_conda conda install ipykernel
-
ModuleNotFoundError: No module named 'past'
pip3 install future
-
TypeError: slice indices must be integers or None or have an index method
将报错的位置下标运算中的浮点除法 '/' 改成整除 '//' 即可。
KNN 部分比较简单,主要内容是向量化编程以及熟悉 numpy,对 MATLAB 有了解的话上手会很快。除此之外还涉及到交叉验证等基础知识。
def compute_distances_two_loops(self, X):
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
dists[i][j] = np.sqrt(np.sum((X[i] - self.X_train[j])**2))
return dists
def predict_labels(self, dists, k=1):
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
closest_y = []
for ind in np.argsort(dists[i])[:k]:
closest_y.append(self.y_train[ind])
y_pred[i] = np.argmax(np.bincount(closest_y))
return y_pred
这里用到了 np.argsort,获取前 k 个最接近的训练样本的 label,以及 np.bincount,获取出现次数最多的 label。
def compute_distances_one_loop(self, X):
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
dists[i] = np.sqrt(np.sum((self.X_train - X[i])**2, axis=1))
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
testSqua = np.sum(X**2, axis=1)
trainSqua = np.transpose(np.sum(self.X_train**2, axis=1))
crossPoly = np.dot(X, np.transpose(self.X_train))
dists = np.sqrt(testSqua[:,np.newaxis] + trainSqua[np.newaxis,:] - 2 * crossPoly)
return dists
这里主要用到的是多项式的展开,三者比较说明向量化还是很强的
Two loop version took 30.033519 seconds
One loop version took 32.466723 seconds
No loop version took 0.308525 seconds
num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
X_train_folds = []
y_train_folds = []
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
k_to_accuracies = {}
for k in k_choices:
k_to_accuracies[k] = []
for i in range(num_folds):
X_train_KFold = np.array([]).reshape(0, 3072)
y_train_KFold = np.array([])
for j in range(num_folds):
if j != i:
X_train_KFold = np.concatenate((X_train_KFold, X_train_folds[j]))
y_train_KFold = np.concatenate((y_train_KFold, y_train_folds[j]))
X_test_KFold = X_train_folds[i]
y_test_KFold = y_train_folds[i]
classifierKFold = KNearestNeighbor()
classifierKFold.train(X_train_KFold, y_train_KFold)
dists = classifierKFold.compute_distances_no_loops(X_test_KFold)
for k in k_choices:
y_test_pred_KFold = classifierKFold.predict_labels(dists, k=k)
num_correct = np.sum(y_test_pred_KFold == y_test_KFold)
accuracy = float(num_correct) / len(y_test_KFold)
k_to_accuracies[k].append(accuracy)
# Print out the computed accuracies
for k in sorted(k_to_accuracies):
for accuracy in k_to_accuracies[k]:
print('k = %d, accuracy = %f' % (k, accuracy))
这里用到 np.concatenate 实际上很不优雅,如果有更好的方法欢迎告知。
SVM 这部分开始进行梯度的计算,需要一丢丢数学,向量化的部分容易出错。
def svm_loss_naive(W, X, y, reg):
"""
Structured SVM loss function, naive implementation (with loops).
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
dW = np.zeros(W.shape) # initialize the gradient as zero
# compute the loss and the gradient
num_classes = W.shape[1]
num_train = X.shape[0]
loss = 0.0
for i in xrange(num_train):
scores = X[i].dot(W)
correct_class_score = scores[y[i]]
for j in xrange(num_classes):
if j == y[i]:
continue
margin = scores[j] - correct_class_score + 1 # note delta = 1
if margin > 0:
loss += margin
dW[:,j] += X[i]
dW[:,y[i]] -= X[i]
# Right now the loss is a sum over all training examples, but we want it
# to be an average instead so we divide by num_train.
loss /= num_train
dW /= num_train
# Add regularization to the loss.
loss += reg * np.sum(W * W)
dW += reg * 2 * W
#############################################################################
# TODO: #
# Compute the gradient of the loss function and store it dW. #
# Rather that first computing the loss and then computing the derivative, #
# it may be simpler to compute the derivative at the same time that the #
# loss is being computed. As a result you may need to modify some of the #
# code above to compute the gradient. #
#############################################################################
return loss, dW
注意到我们计算的梯度是 loss 对权重 W 的梯度,因此与 loss 应该是同步的。在纯循环的代码里很容易看出,loss 的变化会有相应的梯度的变化。平均化和正则项比较容易遗漏。
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.
Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
#############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
num_classes = W.shape[1]
num_train = X.shape[0]
scores = np.dot(X, W)
correct_class_score = scores[(np.arange(num_train), y)]
margin = scores - correct_class_score[:,np.newaxis] + 1
mask = margin > 0
loss += np.sum(margin[mask])
loss -= num_train
loss /= num_train
loss += reg * np.sum(W * W)
#############################################################################
# END OF YOUR CODE #
#############################################################################
#############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
res = np.zeros(mask.shape)
res[mask] = 1.0
row_sum = np.sum(res, axis=1)
res[np.arange(num_train), y] -= row_sum
dW = np.dot(X.T, res) / num_train + reg * 2 * W
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, dW
向量化的操作与循环基本上是对应的,用到了 np.newaxis 等矩阵操作。
计算出梯度以后进行 SGD 就比较简单了。
learning_rates = [1e-7, 1e-6, 8e-8, 5e-8]
regularization_strengths = [2.5e4, 1e4, 1.5e4]
# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1 # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.
for lr in learning_rates:
for reg in regularization_strengths:
svm = LinearSVM()
tic = time.time()
svm.train(X_train, y_train, learning_rate=lr, reg=reg,num_iters=1500,
verbose=True)
y_train_pred = svm.predict(X_train)
y_val_pred = svm.predict(X_val)
train_acc = np.mean(y_train == y_train_pred)
val_acc = np.mean(y_val == y_val_pred)
if val_acc > best_val:
best_val = val_acc
best_svm = svm
results[(lr, reg)] = (train_acc, val_acc)
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
该部分属于看脸的玄学调参,我这边最好有 39.4% 左右。
最后的可视化结果说实话我啥也看不出来……
def softmax_loss_naive(W, X, y, reg):
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
num_train = X.shape[0]
num_classes = W.shape[1]
for i in xrange(num_train):
scores = np.dot(X[i], W)
scores = np.exp(scores)
scores = scores / np.sum(scores)
loss -= np.log(scores[y[i]])
for j in xrange(num_classes):
dW[:,j] += X[i] * scores[j]
dW[:,y[i]] -= X[i]
loss /= num_train
loss += reg * np.sum(W * W)
dW /= num_train
dW += 2.0 * reg * W
return loss, dW
需要一些数学推导,这个计算过程能很好的体现出 Softmax 梯度容易计算的特点。
def softmax_loss_vectorized(W, X, y, reg):
"""
Softmax loss function, vectorized version.
Inputs and outputs are the same as softmax_loss_naive.
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
num_train = X.shape[0]
num_classes = W.shape[1]
scores = np.dot(X, W)
scores = np.exp(scores)
scores = scores / np.sum(scores, axis=1)[:, None]
loss -= np.sum(np.log(scores[(np.arange(num_train), y)]))
scores[(np.arange(num_train), y)] -= 1
dW += np.dot(X.T, scores)
loss /= num_train
loss += reg * np.sum(W * W)
dW /= num_train
dW += 2.0 * reg * W
return loss, dW
速度比较结果如下:
naive loss: 2.330105e+00 computed in 0.076748s
vectorized loss: 2.330105e+00 computed in 0.003300s
Loss difference: 0.000000
Gradient difference: 0.000000
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [5e-9, 8e-8, 5e-8, 1e-7]
regularization_strengths = [8e3, 1e4, 1.5e4, 5e4, 1e5]
for lr in learning_rates:
for reg in regularization_strengths:
softmax = Softmax()
tic = time.time()
softmax.train(X_train, y_train, learning_rate=lr, reg=reg,num_iters=1500,
verbose=True)
y_train_pred = softmax.predict(X_train)
y_val_pred = softmax.predict(X_val)
train_acc = np.mean(y_train == y_train_pred)
val_acc = np.mean(y_val == y_val_pred)
if val_acc > best_val:
best_val = val_acc
best_softmax = softmax
results[(lr, reg)] = (train_acc, val_acc)
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
我得到的最好结果是 36.5%
这次作业最复杂的部分就是双层神经网络梯度的计算。
h1 = np.dot(X, W1) + b1
h1[h1 < 0] = 0.0
# dropout = np.ones(h1.shape[0] * h1.shape[1])
# dropout[np.random.choice(h1.shape[0] * h1.shape[1], int(0.1 * h1.shape[0] * h1.shape[1]))] = 0.0
# h1 = h1 * np.reshape(dropout, h1.shape)
scores = np.dot(h1, W2) + b2
看到有些博客上写 h1<0
应该为 h1<1e5
,防止临界无梯度,但我在实际训练时没有发现特别明显的问题。dropout 用于后续优化,目前不加。
scores = np.exp(scores)
scores = scores / np.sum(scores, axis=1)[:, None]
loss -= np.sum(np.log(scores[(np.arange(N), y)]))
loss /= N
loss += reg * (np.sum(W2 * W2) + np.sum(b1 * b1) + np.sum(W1 * W1) + np.sum(b2 * b2))
# Backward pass: compute gradients
grads = {}
scores[(np.arange(N), y)] -= 1
grads['b2'] = np.sum(scores, axis=0) / N + 2.0 * reg * b2
grads['W2'] = np.dot(h1.T, scores) / N + 2.0 * reg * W2
dh1 = np.dot(scores, W2.T) / N
mask = h1 <= 0
dhdb = dh1
dhdb[mask] = 0.0
grads['b1'] = np.sum(dhdb, axis=0) + 2.0 * reg * b1
grads['W1'] = np.dot(X.T, dhdb) + 2.0 * reg * W1
其中梯度的计算比较复杂,强烈推荐手推一遍公式,想清楚了再写代码,相比直接上手试错 debug 效率要高得多。
调参的部分与前面类似,不再赘述。我用 hidden_size=150, learning_rate=1e-3, learning_rate_decay=0.95
得到的验证集准确率为 55.5%,加上 dropout 最好时能到 60%。
在优化时可加上 dropout,我尝试着多加一层神经网络,但是遇到了梯度消失的问题,可能需要对输入进行比例放大。
特征提取部分比较简单,基本上就是前述方法的运用,只不过输入变成预提取的特征。
from cs231n.classifiers.linear_classifier import LinearSVM
learning_rates = [1e-9, 1e-8, 1e-7, 5e-8]
regularization_strengths = [5e4, 5e5, 5e6]
results = {}
best_val = -1
best_svm = None
for lr in learning_rates:
for reg in regularization_strengths:
svm = LinearSVM()
svm.train(X_train_feats, y_train, learning_rate=lr, reg=reg,num_iters=1500,
verbose=True)
y_train_pred = svm.predict(X_train_feats)
y_val_pred = svm.predict(X_val_feats)
train_acc = np.mean(y_train == y_train_pred)
val_acc = np.mean(y_val == y_val_pred)
if val_acc > best_val:
best_val = val_acc
best_svm = svm
results[(lr, reg)] = (train_acc, val_acc)
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
神经网络方法
from cs231n.classifiers.neural_net import TwoLayerNet
input_dim = X_train_feats.shape[1]
hidden_dim = 500
num_classes = 10
net = TwoLayerNet(input_dim, hidden_dim, num_classes)
best_net = None
stats = net.train(X_train_feats * 100, y_train, X_val_feats * 100, y_val,
num_iters=20000, batch_size=200,
learning_rate=1e-3, learning_rate_decay=0.99,
reg=0.05, verbose=True)
val_acc = (net.predict(X_val_feats) == y_val).mean()
print('Validation accuracy: ', val_acc)
best_net = net
这里我没有进行参数调整。使用上面的参数得到的准确率接近 60%。
值得注意的是,如果使用默认的参数进行训练,loss 几乎不降,打印了grad['W1']
的模值发现过小。因此对输入进行了 100 倍的放大,减少精度损失。