Official PyTorch implementation of Future Frame Synthesis for Fast Monte Carlo Rendering.
Zhan Li1, Carl S Marshall2, Deepak S Vembar2, Feng Liu 1,
1Portland State University, 2Intel
Graphic Interface 2022
conda create --name nfe python
conda activate nfe
pip install -r requirements.txt
checked with python 3.10.4 and conda 4.12.0
data folder place unzipped data folder under NFE, so it would be like
NFE
├── data
├── code
export NFEDIR=$(pwd); # add NFEDIR
cd code; # cd to code dir
python main_sq.py --eval --write_images --mywrite 1 --val_n_batches -1 --resume $NFEDIR"/data/modelweight/br_0.3-cr_0.3-mlv_1-limgain_0-L_3-mask_F-phase_fused-pr_0.3-tr_0.5/best.pt.tar" --threshold 0.4 --br 0.3 --cr 0.3 --model FPCGE --phase fused --pr 0.3 --save $NFEDIR"/data/output" --tr 0.5 --train_file $NFEDIR"/data/trainingset" --val_file $NFEDIR"/data/input" --timing 1
Image results will be saved at data/output/FPCGE directory
If you find this repository useful for your research, please use the following.
@inproceedings{
li2022future,
title={Future Frame Synthesis for Fast Monte Carlo Rendering},
author={Zhan Li and Carl S Marshall and Deepak S Vembar and Feng Liu},
booktitle={Graphics Interface 2022},
year={2022},
url={https://openreview.net/forum?id=HI9zjeYVaG9}
}
This project is supported by a gift from Intel.
The codes are heavily based on SDC-Net: Video prediction using spatially-displaced convolution and Improving Semantic Segmentation via Video Propagation and Label Relaxation.
Our another interesting Fast Monte Carlo Rendering Paper.
Fast Monte Carlo Rendering via Multi-Resolution Sampling