-
Notifications
You must be signed in to change notification settings - Fork 959
/
Copy pathflux.py
409 lines (329 loc) · 15.6 KB
/
flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Single File Implementation of Flux with aggressive optimizations, Copyright Forge 2024
# If used outside Forge, only non-commercial use is allowed.
# See also https://github.com/black-forest-labs/flux
import math
import torch
from torch import nn
from einops import rearrange, repeat
from backend.attention import attention_function
from backend.utils import fp16_fix
def attention(q, k, v, pe):
q, k = apply_rope(q, k, pe)
x = attention_function(q, k, v, q.shape[1], skip_reshape=True)
return x
def rope(pos, dim, theta):
if pos.device.type == "mps":
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
else:
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta ** scale)
# out = torch.einsum("...n,d->...nd", pos, omega)
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
del cos_out, sin_out
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
b, n, d, _ = out.shape
out = out.view(b, n, d, 2, 2)
return out.float()
def apply_rope(xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
del xq_, xk_
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def timestep_embedding(t, dim, max_period=10000, time_factor=1000.0):
t = time_factor * t
half = dim // 2
# TODO: Once A trainer for flux get popular, make timestep_embedding consistent to that trainer
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
# Block CUDA steam, but consistent with official codes:
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
del freqs
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
del args
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class EmbedND(nn.Module):
def __init__(self, dim, theta, axes_dim):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids):
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
del ids, n_axes
return emb.unsqueeze(1)
class MLPEmbedder(nn.Module):
def __init__(self, in_dim, hidden_dim):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x):
x = self.silu(self.in_layer(x))
return self.out_layer(x)
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x):
to_args = dict(device=x.device, dtype=x.dtype)
x = x.float()
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(**to_args) * self.scale.to(**to_args)
class QKNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q, k, v):
del v
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(k), k.to(q)
class SelfAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x, pe):
qkv = self.qkv(x)
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = qkv.shape
qkv = qkv.view(B, L, 3, self.num_heads, -1)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
del q, k, v
x = self.proj(x)
return x
class Modulation(nn.Module):
def __init__(self, dim, double):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec):
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return out
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio, qkv_bias=False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img, txt, vec, pe):
img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = self.img_mod(vec)
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1_scale) * img_modulated + img_mod1_shift
del img_mod1_shift, img_mod1_scale
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = img_qkv.shape
H = self.num_heads
D = img_qkv.shape[-1] // (3 * H)
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = self.txt_mod(vec)
del vec
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1_scale) * txt_modulated + txt_mod1_shift
del txt_mod1_shift, txt_mod1_scale
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = txt_qkv.shape
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
attn = attention(q, k, v, pe=pe)
del pe, q, k, v
txt_attn, img_attn = attn[:, :txt.shape[1]], attn[:, txt.shape[1]:]
del attn
img = img + img_mod1_gate * self.img_attn.proj(img_attn)
del img_attn, img_mod1_gate
img = img + img_mod2_gate * self.img_mlp((1 + img_mod2_scale) * self.img_norm2(img) + img_mod2_shift)
del img_mod2_gate, img_mod2_scale, img_mod2_shift
txt = txt + txt_mod1_gate * self.txt_attn.proj(txt_attn)
del txt_attn, txt_mod1_gate
txt = txt + txt_mod2_gate * self.txt_mlp((1 + txt_mod2_scale) * self.txt_norm2(txt) + txt_mod2_shift)
del txt_mod2_gate, txt_mod2_scale, txt_mod2_shift
txt = fp16_fix(txt)
return img, txt
class SingleStreamBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, qk_scale=None):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x, vec, pe):
mod_shift, mod_scale, mod_gate = self.modulation(vec)
del vec
x_mod = (1 + mod_scale) * self.pre_norm(x) + mod_shift
del mod_shift, mod_scale
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
del x_mod
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
attn = attention(q, k, v, pe=pe)
del q, k, v, pe
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), dim=2))
del attn, mlp
x = x + mod_gate * output
del mod_gate, output
x = fp16_fix(x)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, vec):
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
del vec
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
del scale, shift
x = self.linear(x)
return x
class IntegratedFluxTransformer2DModel(nn.Module):
def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_embed: bool):
super().__init__()
self.guidance_embed = guidance_embed
self.in_channels = in_channels * 4
self.out_channels = self.in_channels
if hidden_size % num_heads != 0:
raise ValueError(f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}")
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if guidance_embed else nn.Identity()
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def inner_forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
del y, guidance
ids = torch.cat((txt_ids, img_ids), dim=1)
del txt_ids, img_ids
pe = self.pe_embedder(ids)
del ids
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
del pe
img = img[:, txt.shape[1]:, ...]
del txt
img = self.final_layer(img, vec)
del vec
return img
def forward(self, x, timestep, context, y, guidance=None, **kwargs):
bs, c, h, w = x.shape
input_device = x.device
input_dtype = x.dtype
patch_size = 2
pad_h = (patch_size - x.shape[-2] % patch_size) % patch_size
pad_w = (patch_size - x.shape[-1] % patch_size) % patch_size
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode="circular")
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
del x, pad_h, pad_w
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=input_device, dtype=input_dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=input_device, dtype=input_dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=input_device, dtype=input_dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=input_device, dtype=input_dtype)
del input_device, input_dtype
out = self.inner_forward(img, img_ids, context, txt_ids, timestep, y, guidance)
del img, img_ids, txt_ids, timestep, context
out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
del h_len, w_len, bs
return out