Skip to content

Simple GPU rendering of scientific data with Pytorch, Jax, CuPy, and Warp backends.

License

Notifications You must be signed in to change notification settings

loliverhennigh/PhantomGaze

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PhantomGaze: A GPU-Accelerated Rendering Engine for Scientific Visualization

Introduction

PhantomGaze is a Python package that provides a basic rendering engine optimized for scientific computing visualizations. Utilizing the power of Numba, it enables efficient operations directly on the GPU, enhancing the visualization of complex scientific data. This package is particularly useful for rendering volumetric data, geometric shapes, and contour visualizations with ease.

Features

  • GPU-accelerated rendering engine
  • Volumetric rendering
  • Geometric rendering
  • Contour rendering
  • Customizable color maps
  • Integration with GPU libraries such as CuPy, JAX, PyTorch, and Warp.

Installation

PhantomGaze can be installed using pip:

pip install .

(TODO: Make package available on PyPI)

Usage

There are several examples in the examples directory. A minimal example of a contour plot is shown below:

import cupy as cp
import matplotlib.pyplot as plt

import phantomgaze as pg

# Create SDF feild of a sphere using cupy
lin = cp.linspace(-1, 1, 256)
X, Y, Z = cp.meshgrid(lin, lin, lin, indexing="ij")
sphere = -(cp.sqrt(X**2 + Y**2 + Z**2) - 1.0)
sphere_volume = pg.objects.Volume(
    sphere, spacing=(2 / 256, 2 / 256, 2 / 256), origin=(-1.0, -1.0, -1.0)
)
color_volume = pg.objects.Volume(
    cp.sin(X * 2 * cp.pi) * cp.sin(Y * 2 * cp.pi) * cp.sin(Z * 2 * cp.pi),
    spacing=(2 / 256, 2 / 256, 2 / 256),
    origin=(-1.0, -1.0, -1.0),
)

# Create camera object
camera = pg.Camera(position=(2.0, 1.0, -4.0), focal_point=(0.0, 0.0, 0.0), view_up=(0.0, 1.0, 0.0))

# Render the contour of the inner sphere
screen_buffer = pg.render.contour(sphere_volume, camera, threshold=0.0, color=color_volume)

# Show the rendered image
plt.imshow(screen_buffer.image.get())
plt.show()

This produces the following image:

Contour

Gallery

The following images were generated using the examples in the examples directory.

Axes Geometry Volume

About

Simple GPU rendering of scientific data with Pytorch, Jax, CuPy, and Warp backends.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages