-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsv_convert_input.py
executable file
·55 lines (48 loc) · 2.03 KB
/
tsv_convert_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python3
import argparse
import csv
import json
import sys
from typing import List, Union
from predictor import InputDict, SeqInputDict
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Convert PredictONCO Predictor input from TSV to JSON')
parser.add_argument('-i', '--input', type=lambda f: open(f, 'r'), default=sys.stdin)
parser.add_argument('-o', '--output', type=lambda f: open(f, 'w'), default=sys.stdout)
parser.add_argument('-d', '--delimiter', default='\t')
args = parser.parse_args()
reader = csv.DictReader(args.input, delimiter=args.delimiter)
if reader.fieldnames is None:
raise Exception("reader.fieldnames is None")
data: List[Union[InputDict, SeqInputDict]] = []
for row in reader:
protein_type = row['protein_type']
domain = row['domain']
if protein_type not in ('PROTO_ONCOGENE', 'TUMOR_SUPPRESSOR'):
raise Exception('Protein type is ' + protein_type)
if domain not in ('cytoplasmic', 'extracellular', 'transmembrane', 'other'):
raise Exception('Domain is ' + domain)
structural = bool(int(row['structure']))
d = SeqInputDict(
id=row['id'],
structure=structural,
protein_type=protein_type, # type: ignore
essential=row['essential'] == "1",
domain=domain, # type: ignore
predictsnp=float(row['predictsnp']),
essential_residues_all=int(row['essential_residues_all']),
conservation=int(row['conservation']),
msa_data=float(row['msa_data']),
)
if structural:
d = InputDict(
**d,
pocket=row['pocket'] == "1",
foldx=float(row['foldx']),
rosetta=float(row['rosetta']),
pka_num=int(row['pka_num']),
pka_min=float(row['pka_min'] or "0"),
pka_max=float(row['pka_max'] or "0"),
)
data.append(d)
json.dump(data, args.output)