|
| 1 | +--- |
| 2 | +title: "TidyTuesday Week 19: Portal Project" |
| 3 | +description: "TidyTuesday: Rodents of Portal Arizona" |
| 4 | +twitter-card: |
| 5 | + image: "thumbnail.png" |
| 6 | +author: |
| 7 | + - name: Louise E. Sinks |
| 8 | + url: https://lsinks.github.io/ |
| 9 | +date: 05-09-2023 |
| 10 | +categories: [R, TidyTuesday, R-code, Code-Along, Data-Viz, data validation, exploratory data analysis] # self-defined categories |
| 11 | +citation: |
| 12 | + url: https://lsinks.github.io/posts/2023-05-09-tidytuesday-childcare/childcare |
| 13 | +image: "thumbnail.png" |
| 14 | +draft: true # setting this to `true` will prevent your post from appearing on your listing page until you're ready! |
| 15 | +--- |
| 16 | + |
| 17 | +Today's TidyTuesday is about childcare prices. |
| 18 | + |
| 19 | +```{r} |
| 20 | +
|
| 21 | +library(tidyverse) |
| 22 | +library(gt) |
| 23 | +library(skimr) |
| 24 | +``` |
| 25 | + |
| 26 | +Loading the data in the usual way. |
| 27 | + |
| 28 | +```{r} |
| 29 | +tuesdata <- tidytuesdayR::tt_load(2023, week = 19) |
| 30 | +
|
| 31 | +childcare_costs <- tuesdata$childcare_costs |
| 32 | +counties <- tuesdata$counties |
| 33 | +``` |
| 34 | + |
| 35 | +There are two data files. The dataframe counties has information about county and state, while childcare_costs has a variety of economic data for each county over several years (2008 - 2018). The two dataframes can be joined on county_fips_code, which is a unique identifier for every county. If you look at the TidyTuesday notes, they actually started out in a single file and were split up. |
| 36 | + |
| 37 | +```{r} |
| 38 | +labor_rates <- childcare_costs %>% |
| 39 | + select(study_year, county_fips_code, flfpr_20to64, flfpr_20to64_under6, mc_infant, mfcc_infant ) |
| 40 | +``` |
| 41 | + |
| 42 | +```{r} |
| 43 | +labor_rates_2 <- labor_rates %>% |
| 44 | + left_join(counties) |
| 45 | +``` |
| 46 | + |
| 47 | +```{r} |
| 48 | +#| column: page |
| 49 | +
|
| 50 | +my_skim <- skim_with(numeric = sfl(p25 = NULL, p50 = NULL, p75 = NULL)) |
| 51 | +
|
| 52 | +my_skim(labor_rates_2) |
| 53 | +``` |
| 54 | + |
| 55 | +Employment gap between all women and women with young children |
| 56 | + |
| 57 | +```{r} |
| 58 | +labor_rates_2 <- labor_rates_2 %>% |
| 59 | + mutate(gap = flfpr_20to64 - flfpr_20to64_under6) |
| 60 | +``` |
| 61 | + |
| 62 | +average cost of infant care |
| 63 | + |
| 64 | +```{r} |
| 65 | +labor_rates_2 <- labor_rates_2 %>% |
| 66 | + mutate(cost = (mc_infant + mfcc_infant)/2) |
| 67 | +``` |
| 68 | + |
| 69 | +plot gap vs. cost for 2018 |
| 70 | + |
| 71 | +```{r} |
| 72 | +labor_rates_2 %>% |
| 73 | + # filter(study_year == 2018) %>% |
| 74 | + ggplot(aes(cost, gap, color = study_year)) + |
| 75 | + geom_point() + geom_smooth() |
| 76 | +``` |
| 77 | + |
| 78 | +correlation |
| 79 | + |
| 80 | +```{r} |
| 81 | +
|
| 82 | +labor_rates_2_2018 <- labor_rates_2 %>% |
| 83 | + filter(study_year == 2018) |
| 84 | +cor(labor_rates_2_2018$gap, labor_rates_2_2018$cost, use = "pairwise.complete.obs") |
| 85 | +
|
| 86 | +``` |
0 commit comments