Skip to content

lucidrains/discrete-key-value-bottleneck-pytorch

Repository files navigation

Discrete Key / Value Bottleneck - Pytorch

Implementation of Discrete Key / Value Bottleneck, in Pytorch.

Install

$ pip install discrete-key-value-bottleneck-pytorch

Usage

import torch
from discrete_key_value_bottleneck_pytorch import DiscreteKeyValueBottleneck

key_value_bottleneck = DiscreteKeyValueBottleneck(
    dim = 512,                  # input dimension
    dim_memory = 512,           # output dimension - or dimension of each memories for all heads (defaults to same as input)
    num_memory_codebooks = 2,   # number of memory codebook, embedding is split into 2 pieces of 256, 256, quantized, outputs 256, 256, flattened together to 512
    num_memories = 256,         # number of memories
    decay = 0.9,                # the exponential moving average decay, lower means the keys will change faster
)

embeds = torch.randn(1, 1024, 512)  # from pretrained encoder

memories = key_value_bottleneck(embeds)

memories.shape # (1, 1024, 512)  # (batch, seq, memory / values dimension)

# now you can use the memories for the downstream decoder

You can also pass the pretrained encoder to the bottleneck and it will automatically invoke it. Example with vit-pytorch library

$ pip install vit-pytorch

Then

import torch

# import vision transformer

from vit_pytorch import SimpleViT
from vit_pytorch.extractor import Extractor

vit = SimpleViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 512,
    depth = 6,
    heads = 16,
    mlp_dim = 2048
)

# train vit, or load pretrained

vit = Extractor(vit, return_embeddings_only = True)

# then

from discrete_key_value_bottleneck_pytorch import DiscreteKeyValueBottleneck

enc_with_bottleneck = DiscreteKeyValueBottleneck(
    encoder = vit,         # pass the frozen encoder into the bottleneck
    dim = 512,             # input dimension
    num_memories = 256,    # number of memories
    dim_memory = 2048,     # dimension of the output memories
    decay = 0.9,           # the exponential moving average decay, lower means the keys will change faster
)

images = torch.randn(1, 3, 256, 256)  # input to encoder

memories = enc_with_bottleneck(images) # (1, 64, 2048)   # (64 patches)

Todo

  • work off multiple encoder's embedding spaces, and allow for shared or separate memory spaces, to aid exploration in this research

Citations

@inproceedings{Trauble2022DiscreteKB,
    title   = {Discrete Key-Value Bottleneck},
    author  = {Frederik Trauble and Anirudh Goyal and Nasim Rahaman and Michael Curtis Mozer and Kenji Kawaguchi and Yoshua Bengio and Bernhard Scholkopf},
    year    = {2022}
}