Skip to content

Commit

Permalink
Merge 9b18aad into 4f5f346
Browse files Browse the repository at this point in the history
  • Loading branch information
lukesonnet authored Feb 8, 2018
2 parents 4f5f346 + 9b18aad commit 555c464
Show file tree
Hide file tree
Showing 17 changed files with 297 additions and 87 deletions.
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ src/deprecated
^\.Rproj\.user$
^\.travis\.yml$
^appveyor\.yml$
^tests/testthat/test_krlogit_fns\.R$
37 changes: 34 additions & 3 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,37 @@
# R for travis: see documentation at https://docs.travis-ci.com/user/languages/r

language: R
sudo: false
cache: packages
warnings_are_errors: false
warnings_are_errors: false

matrix:
include:
- os: linux
r: release

- os: linux
r: oldrel
after_success:
- echo skipping source packaging on linux/oldrel

- os: linux
r: devel
after_success:
- echo skipping source packaging on linux/devel

- os: osx
r: release
if: branch = master

- os: osx
osx_image: xcode6.4
r: oldrel
if: branch = master

r_packages:
- numDeriv

r_github_packages:
- r-lib/covr

after_success:
- test $TRAVIS_OS_NAME == "linux" && Rscript -e 'covr::coveralls()'
13 changes: 7 additions & 6 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
Package: KRLS2
Type: Package
Title: Kernel-based Regularized Least squares (KRLS)
Version: 0.4
Date: 2016-05-15
Title: Kernel-based Regularized Least squares
Version: 1.1.0
Date: 2018-02-08
Author: Jens Hainmueller (Stanford) Chad Hazlett (UCLA) Luke Sonnet (UCLA)
Maintainer: Jens Hainmueller <jhain@stanford.edu>
Description: Package implements Kernel-based Regularized Least Squares (KRLS), a
Description: Implements Kernel-based Regularized Least Squares (KRLS), a
machine learning method to fit multidimensional functions y=f(x) for regression
and classification problems without relying on linearity or additivity
assumptions. KRLS finds the best fitting function by minimizing the squared loss
Expand All @@ -17,6 +17,7 @@ Imports:
LinkingTo: Rcpp, RcppArmadillo
License: GPL (>= 2)
Suggests:
lattice,
testthat
testthat,
lattice
URL: https://www.r-project.org, https://www.stanford.edu/~jhain/
RoxygenNote: 6.0.1
14 changes: 13 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -37,4 +37,16 @@ export(summary.krls2)
export(trace_mat)
import(RSpectra)
importFrom(Rcpp,sourceCpp)
useDynLib(KRLS2)
importFrom(grDevices,devAskNewPage)
importFrom(graphics,arrows)
importFrom(graphics,par)
importFrom(graphics,plot)
importFrom(stats,as.formula)
importFrom(stats,optim)
importFrom(stats,optimize)
importFrom(stats,predict)
importFrom(stats,pt)
importFrom(stats,quantile)
importFrom(stats,sd)
importFrom(stats,var)
useDynLib(KRLS2, .registration = TRUE)
32 changes: 16 additions & 16 deletions R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,81 +3,81 @@

#' @export
mult_diag <- function(x, d) {
.Call('_KRLS2_mult_diag', PACKAGE = 'KRLS2', x, d)
.Call(`_KRLS2_mult_diag`, x, d)
}

#' @export
trace_mat <- function(x) {
.Call('_KRLS2_trace_mat', PACKAGE = 'KRLS2', x)
.Call(`_KRLS2_trace_mat`, x)
}

#' @export
krls_gr_trunc <- function(U, D, y, w, fitted, dhat, lambda) {
.Call('_KRLS2_krls_gr_trunc', PACKAGE = 'KRLS2', U, D, y, w, fitted, dhat, lambda)
.Call(`_KRLS2_krls_gr_trunc`, U, D, y, w, fitted, dhat, lambda)
}

#' @export
krls_hess_trunc_inv <- function(U, D, w, lambda) {
.Call('_KRLS2_krls_hess_trunc_inv', PACKAGE = 'KRLS2', U, D, w, lambda)
.Call(`_KRLS2_krls_hess_trunc_inv`, U, D, w, lambda)
}

#' @export
krlogit_fn_trunc <- function(par, U, D, y, w, lambda) {
.Call('_KRLS2_krlogit_fn_trunc', PACKAGE = 'KRLS2', par, U, D, y, w, lambda)
.Call(`_KRLS2_krlogit_fn_trunc`, par, U, D, y, w, lambda)
}

#' @export
krlogit_gr_trunc <- function(par, U, D, y, w, lambda) {
.Call('_KRLS2_krlogit_gr_trunc', PACKAGE = 'KRLS2', par, U, D, y, w, lambda)
.Call(`_KRLS2_krlogit_gr_trunc`, par, U, D, y, w, lambda)
}

#' @export
partial_logit <- function(K, coef, beta0) {
.Call('_KRLS2_partial_logit', PACKAGE = 'KRLS2', K, coef, beta0)
.Call(`_KRLS2_partial_logit`, K, coef, beta0)
}

#' @export
krlogit_hess_trunc_inv <- function(par, U, D, y, w, lambda) {
.Call('_KRLS2_krlogit_hess_trunc_inv', PACKAGE = 'KRLS2', par, U, D, y, w, lambda)
.Call(`_KRLS2_krlogit_hess_trunc_inv`, par, U, D, y, w, lambda)
}

#' @export
euc_dist <- function(x1, x2) {
.Call('_KRLS2_euc_dist', PACKAGE = 'KRLS2', x1, x2)
.Call(`_KRLS2_euc_dist`, x1, x2)
}

#' @export
kern_gauss_1d <- function(x1, x2, b) {
.Call('_KRLS2_kern_gauss_1d', PACKAGE = 'KRLS2', x1, x2, b)
.Call(`_KRLS2_kern_gauss_1d`, x1, x2, b)
}

#' @export
kern_gauss <- function(x, b) {
.Call('_KRLS2_kern_gauss', PACKAGE = 'KRLS2', x, b)
.Call(`_KRLS2_kern_gauss`, x, b)
}

#' @export
new_gauss_kern <- function(newx, oldx, b) {
.Call('_KRLS2_new_gauss_kern', PACKAGE = 'KRLS2', newx, oldx, b)
.Call(`_KRLS2_new_gauss_kern`, newx, oldx, b)
}

#' @export
solve_for_d_ls <- function(y, U, D, lambda) {
.Call('_KRLS2_solve_for_d_ls', PACKAGE = 'KRLS2', y, U, D, lambda)
.Call(`_KRLS2_solve_for_d_ls`, y, U, D, lambda)
}

#' @export
solve_for_d_ls_w <- function(y, U, D, w, lambda) {
.Call('_KRLS2_solve_for_d_ls_w', PACKAGE = 'KRLS2', y, U, D, w, lambda)
.Call(`_KRLS2_solve_for_d_ls_w`, y, U, D, w, lambda)
}

#' @export
pwmfx <- function(k, x, coefhat, vcovc, p, b) {
.Call('_KRLS2_pwmfx', PACKAGE = 'KRLS2', k, x, coefhat, vcovc, p, b)
.Call(`_KRLS2_pwmfx`, k, x, coefhat, vcovc, p, b)
}

#' @export
pwmfx_novar <- function(k, x, coefhat, p, b) {
.Call('_KRLS2_pwmfx_novar', PACKAGE = 'KRLS2', k, x, coefhat, p, b)
.Call(`_KRLS2_pwmfx_novar`, k, x, coefhat, p, b)
}

32 changes: 18 additions & 14 deletions R/inference.R
Original file line number Diff line number Diff line change
Expand Up @@ -99,24 +99,28 @@ inference.krls2 <- function(obj,
if(is.null(clusters)) {
score <- matrix(nrow = n, ncol = length(obj$dhat))
for(i in 1:n) {
score[i, ] = krls_gr_trunc(obj$U[i, , drop = F],
obj$D,
y[i],
obj$w[i],
yfitted[i],
obj$dhat,
obj$lambda/n)
score[i, ] <- krls_gr_trunc(
obj$U[i, , drop = F],
obj$D,
y[i],
obj$w[i],
yfitted[i],
obj$dhat,
obj$lambda / n
)
}
} else {
score <- matrix(nrow = length(clusters), ncol = length(obj$dhat))
for(j in 1:length(clusters)){
score[j, ] = krls_gr_trunc(obj$U[clusters[[j]], , drop = F],
obj$D,
y[clusters[[j]]],
obj$w[clusters[[j]]],
yfitted[clusters[[j]]],
obj$dhat,
length(clusters[[j]]) * obj$lambda/n)
score[j, ] <- krls_gr_trunc(
obj$U[clusters[[j]], , drop = F],
obj$D,
y[clusters[[j]]],
obj$w[clusters[[j]]],
yfitted[clusters[[j]]],
obj$dhat,
length(clusters[[j]]) * obj$lambda / n
)
}

}
Expand Down
2 changes: 1 addition & 1 deletion R/kernels.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ generateK <- function(X,
U <- truncDat$Utrunc
D <- truncDat$eigvals
} else {
eigobj <- eigen(K)
eigobj <- eigen(K, symmetric = T)
eigvaliszero <- eigobj$values == 0
if(any(eigvaliszero)) {

Expand Down
25 changes: 16 additions & 9 deletions R/krls2.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,11 @@
#' via the summary() function. See summary.krls2().
#'
#' @import RSpectra
#' @useDynLib KRLS2
#' @useDynLib KRLS2, .registration = TRUE
#' @importFrom Rcpp sourceCpp

#' @importFrom grDevices devAskNewPage
#' @importFrom graphics arrows par plot
#' @importFrom stats as.formula optim optimize predict pt quantile sd var

#############
# Functions #
Expand All @@ -54,11 +56,13 @@
#' @param U Positive scalar that determines the upper bound of the search window for the leave-one-out optimization to find \eqn{\lambda}{lambda} with least squares loss. Default is \code{NULL} which means that the upper bound is found by using an algorithm outlined in \code{\link{lambdaline}}. Ignored with logistic loss.
#' @param tol Positive scalar that determines the tolerance used in the optimization routine used to find \eqn{\lambda}{lambda} with least squares loss. Default is \code{NULL} which means that convergence is achieved when the difference in the sum of squared leave-one-out errors between the \var{i} and the \var{i+1} iteration is less than \var{N * 10^-3}. Ignored with logistic loss.
#' @param truncate A boolean that defaults to \code{FALSE}. If \code{TRUE} truncates the kernel matrix, keeping as many eigenvectors as needed so that 1-\code{epsilon} of the total variance in the kernel matrix is retained. Alternatively, you can simply specify \code{epsilon} and truncation will be used.
#' @param epsilon Scalar between 0 and 1 that determines the total variance that can be lost in truncation. If not NULL, truncation is automatically set to TRUE.
#' @param epsilon Scalar between 0 and 1 that determines the total variance that can be lost in truncation. If not NULL, truncation is automatically set to TRUE. If \code{truncate == TRUE}, default is 0.001.
#' @param lastkeeper Number of columns of \code{U} to keep when \code{truncate == TRUE}. Overrides \code{epsilon}.
#' @param con A list of control arguments passed to optimization for the numerical optimization of the kernel regularized logistic loss function.
#' @param returnopt A boolean that defaults to \code{FALSE}. If \code{TRUE}, returns the result of the \code{optim} method called to optimize the kernel regularized logistic loss function.
#' @param returnopt A boolean that defaults to \code{FALSE}. If \code{TRUE}, returns the result of the \code{optim} method called to optimize the kernel regularized logistic loss function. Returns \code{NULL} with leastsquares loss.
#' @param printlevel A number that is either 0 (default), 1, or 2. 0 Has minimal printing, 1 prints out most diagnostics, and 2 prints out most diagnostics including \code{optim} diagnostics for each fold in the cross-validation selection of hyperparameters.
#' @param warn A number that sets your \code{warn} option. We default to 1 so that warnings print as they occur. You can change this to 2 if you want all warnings to be errors, to 0 if you want all warnings to wait until the top-level call is finished, or to a negative number to ignore them.
#' @param sigma DEPRECATED. Users should now use \code{b}, included for backwards compatability.
#' @details
#' \code{krls} implements the Kernel-based Regularized Least Squares (KRLS) estimator as described in Hainmueller and Hazlett (2014). Please consult this reference for any details.

Expand Down Expand Up @@ -121,7 +125,7 @@ krls <- function(# Data arguments
lastkeeper = NULL,
# Optimization arguments
con = list(maxit=500),
returnopt = TRUE,
returnopt = FALSE,
printlevel = 0,
warn = 1,
sigma = NULL, # to provide legacy support for old code,
Expand Down Expand Up @@ -370,17 +374,19 @@ krls <- function(# Data arguments

coefhat <- UDinv %*% out$dhat

opt <- NULL
if (loss == "leastsquares") {

yfitted <- Kdat$K %*% coefhat
yfitted <- yfitted * y.init.sd + y.init.mean

} else {

opt <- if(returnopt) out$opt else NULL

yfitted <- logistic(K=Kdat$K, coeff=coefhat, beta0 = out$beta0hat)

if (returnopt) {
opt <- out$opt
}
}

z <- list(K = Kdat$K,
Expand All @@ -398,7 +404,8 @@ krls <- function(# Data arguments
b = b,
lambda = lambda,
kernel = whichkernel,
loss = loss
loss = loss,
opt = opt
)

class(z) <- "krls2"
Expand Down
Loading

0 comments on commit 555c464

Please sign in to comment.