List of reviewing papers
- SRCNN_2014_ECCV_Learning a Deep Convolutional Network for Image Super-Resolution
- SRCNN_2016_PAMI_Image Super-Resolution Using Deep Convolutional Networks
- CSCN_2015_ICCV_Deep Networks for Image Super-Resolution with Sparse Prior
- CSCN_2016_ACCV_Learning a Mixture of Deep Networks for Single Image Super-Resolution
- CSCN_2016_PAMI_Robust Single Image Super-Resolution via Deep Networks with Sparse Prior
- DRCN_2016_CVPR_Deeply-Recursive Convolutional Network for Image Super-Resolution
- EnhanceNet_2016_ArXiv_Single Image Super_resolution through Automated Texture Synthesis
- arxiv: https://arxiv.org/abs/1612.07919
- github(tensorflow): https://github.com/msmsajjadi/EnhanceNet-Code
- review
- FSRCNN_2016_ECCV_Accelerating the Super-Resolution Convolutional Neural Network
- VDSR_2016_CVPR_Accurate Image Super_Resolution Using Very Deep Convolutional Networks
- VESPCN_2016_ArXiv_Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
- AffGAN_2017_ICLR_Amortised Map Inference for Image Super_Resolution
- DEGREE_2017_TIP_Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution
- DRNN_2017_CVPR_Image Super-Resolution via Deep Recursive Residual Network
- EDSR_2017_CVPRW_Enhanced Deep Residual Networks for Single Image Super-Resolution
- arxiv: https://arxiv.org/abs/1707.02921
- github(Pytorch): https://github.com/thstkdgus35/EDSR-PyTorch
- github(Torch): https://github.com/LimBee/NTIRE2017
- review
- GUN_2017_ArXiv_Gradual Upsampling Network for single image super-resolution
- LapSRN_2017_CVPR_Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
- SRGAN_2017_CVPR_Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- CincGan_2018_CVPR_Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks
- EMBSR_2018_CVPR_Efficient Module Based Single Image Super Resolution for Multiple Problems
- ProSR_2018_CVPR_A Fully Progressive Approach to Single-Image Super-Resolution
- DRRN_2018_CVPR_Image Super-Resolution via Deep Recursive Residual Network
- LRFNets_2018_CVPR_Large Receptive Field Networks for High-Scale Image Super-Resolution
- D-DBPN_2018_CVPR_Deep Back-Projection Networks For Super-Resolution
- RDN_2018_CVPR_Residual Dense Network for Image Super-Resolution
- SFT-GAN_2018_CVPR_Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
- 2018_CVPR_Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
- 2018_CVPR_SRMD_Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
- cvf
- github: https://github.com/cszn/SRMD
- review
- Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs
- RCAN_2018_ECCV_Image_Super-Resolution Using Very Deep Residual Channel Attention Networkds
- arxiv: https://arxiv.org/abs/1807.02758
- cvf
- supplementary
- github(Pytorch): https://github.com/yulunzhang/RCAN
- review