This package provides extended functionality for mixed models. The goal
of mixedup
is to solve little problems I have had that slip through
the cracks from the various modeling packages and others in trying to
get presentable output. Basically the idea is to create (tidy) objects
that are easy to use and essentially ready for presentation, as well as
consistent across packages and across functions. Such objects would be
things like variance components and random effects. I use several of
these packages (including mgcv) for mixed models, and typically have to
do some notable post processing to get some viable output even with
broom::tidy
, and this effort often isn’t applicable if I switch to
another package for the same type of model. These functions attempt to
address this issue.
For more details and examples see https://m-clark.github.io/mixedup/.
You can install mixedup from GitHub with remotes
. Use the second
approach if you don’t already have rstanarm
or brms
(they aren’t
required to use in general).
remotes::install_github('m-clark/mixedup')
# if you don't already have rstanarm and/or brms
withr::with_envvar(c(R_REMOTES_NO_ERRORS_FROM_WARNINGS = "true"),
remotes::install_github('m-clark/mixedup')
)
lme4
glmmTMB
nlme
mgcv
rstanarm
brms
- Extract Variance Components
- Extract Random Effects
- Extract Fixed Effects
- Extract Random Coefficients
- Extract Heterogeneous Variances
- Extract Correlation Structure
- Extract Model Data
- Summarize Model
- Find Typical
Not all features are available to the various modeling packages
(e.g. autocorrelation for lme4
), and some functionality may just not
be supported for this package, but most functions are applicable to the
packages listed.
In the following I suppress the package startup and other information that isn’t necessary for demo.
library(lme4)
lmer_model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
library(glmmTMB)
tmb_model <- glmmTMB(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
library(nlme)
nlme_model <- nlme(
height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1,
start = c(Asym = 103, R0 = -8.5, lrc = -3.3)
)
library(brms)
# brm_model = brm(
# Reaction ~ Days + (1 + Days | Subject),
# data = sleepstudy,
# refresh = -1,
# verbose = FALSE,
# open_progress = FALSE,
# cores = 4,
# iter = 1000
# )
library(rstanarm)
# rstanarm_model = stan_glmer(
# Reaction ~ Days + (1 + Days | Subject),
# data = sleepstudy,
# refresh = -1,
# verbose = FALSE,
# show_messages = FALSE,
# open_progress = FALSE,
# cores = 4,
# iter = 1000
# )
library(mgcv)
gam_model = gam(
Reaction ~ Days +
s(Subject, bs = 're') +
s(Days, Subject, bs = 're'),
data = lme4::sleepstudy,
method = 'REML'
)
library(mixedup)
extract_random_effects(tmb_model)
# A tibble: 36 × 7
group_var effect group value se lower_2.5 upper_97.5
<chr> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
1 Subject Intercept 308 2.82 13.7 -23.9 29.6
2 Subject Intercept 309 -40.0 13.8 -67.2 -12.9
3 Subject Intercept 310 -38.4 13.7 -65.4 -11.5
4 Subject Intercept 330 22.8 13.9 -4.51 50.2
5 Subject Intercept 331 21.6 13.6 -5.11 48.2
6 Subject Intercept 332 8.82 12.9 -16.5 34.1
7 Subject Intercept 333 16.4 13.1 -9.23 42.1
8 Subject Intercept 334 -7.00 12.9 -32.3 18.3
9 Subject Intercept 335 -1.04 14.0 -28.5 26.4
10 Subject Intercept 337 34.7 13.6 7.94 61.4
# … with 26 more rows
extract_fixed_effects(nlme_model)
# A tibble: 3 × 7
term value se z p_value lower_2.5 upper_97.5
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Asym 101. 2.46 41.2 0 96.5 106.
2 R0 -8.63 0.318 -27.1 0 -9.26 -7.99
3 lrc -3.23 0.034 -94.4 0 -3.30 -3.16
extract_random_coefs(lmer_model)
# A tibble: 36 × 7
group_var effect group value se lower_2.5 upper_97.5
<chr> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
1 Subject Intercept 308 254. 13.9 226. 281.
2 Subject Intercept 309 211. 13.9 184. 238.
3 Subject Intercept 310 212. 13.9 185. 240.
4 Subject Intercept 330 275. 13.9 248. 302.
5 Subject Intercept 331 274. 13.9 246. 301.
6 Subject Intercept 332 260. 13.9 233. 288.
7 Subject Intercept 333 268. 13.9 241. 295.
8 Subject Intercept 334 244. 13.9 217. 271.
9 Subject Intercept 335 251. 13.9 224. 278.
10 Subject Intercept 337 286. 13.9 259. 313.
# … with 26 more rows
extract_vc(brm_model, ci_level = .8)
# A tibble: 3 × 7
group effect variance sd sd_10 sd_90 var_prop
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Subject Intercept 793. 28.2 18.7 38.3 0.527
2 Subject Days 42.2 6.50 4.73 8.1 0.028
3 Residual <NA> 669. 25.9 23.6 28.0 0.445
summarize_model(lmer_model, cor_re = TRUE, digits = 1)
Computing profile confidence intervals ...
Variance Components:
Group Effect Variance SD SD_2.5 SD_97.5 Var_prop
Subject Intercept 612.1 24.7 14.4 37.7 0.5
Subject Days 35.1 5.9 3.8 8.8 0.0
Residual 654.9 25.6 22.9 28.9 0.5
Fixed Effects:
Term Value SE t P_value Lower_2.5 Upper_97.5
Intercept 251.4 6.8 36.8 0.0 238.0 264.8
Days 10.5 1.5 6.8 0.0 7.4 13.5
find_typical(gam_model, probs = c(.25, .50, .75))
# A tibble: 6 × 8
group_var effect group value se lower_2.5 upper_97.5 probs
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Subject Days 331 -3.19 2.67 -8.43 2.04 25%
2 Subject Days 369 0.873 2.67 -4.36 6.11 50%
3 Subject Days 352 3.51 2.67 -1.73 8.75 75%
4 Subject Intercept 350 -13.9 13.3 -39.9 12.2 25%
5 Subject Intercept 369 3.26 13.3 -22.8 29.3 50%
6 Subject Intercept 333 17.2 13.3 -8.87 43.2 75%
mods = list(
tmb = tmb_model,
lmer = lmer_model,
brm = brm_model,
stan = rstanarm_model,
gam = gam_model
)
purrr::map_df(mods, extract_vc, .id = 'model')
Computing profile confidence intervals ...
# A tibble: 15 × 8
model group effect variance sd sd_2.5 sd_97.5 var_prop
* <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 tmb Subject "Intercept" 566. 23.8 15.0 37.7 0.451
2 tmb Subject "Days" 32.7 5.72 3.80 8.59 0.026
3 tmb Residual <NA> 655. 25.6 NA NA 0.523
4 lmer Subject "Intercept" 612. 24.7 14.4 37.7 0.47
5 lmer Subject "Days" 35.1 5.92 3.80 8.75 0.027
6 lmer Residual "" 655. 25.6 22.9 28.9 0.503
7 brm Subject "Intercept" 793. 28.2 15.8 46.3 0.527
8 brm Subject "Days" 42.2 6.50 4.32 9.28 0.028
9 brm Residual <NA> 669. 25.9 22.5 29.6 0.445
10 stan Subject "Intercept" 585. 24.2 12.3 36.3 0.447
11 stan Subject "Days" 44.0 6.64 4.00 9.98 0.034
12 stan Residual <NA> 680. 26.1 NA NA 0.519
13 gam Subject "Intercept" 628. 25.1 16.1 39.0 0.477
14 gam Subject "Days" 35.9 5.99 4.03 8.91 0.027
15 gam Residual <NA> 654. 25.6 22.8 28.7 0.496
Please note that the ‘mixedup’ project is released with a Contributor Code of Conduct.
By contributing to this project, you agree to abide by its terms.