forked from modelica/ModelicaStandardLibrary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DC_CompoundExcited.mo
260 lines (257 loc) · 11.2 KB
/
DC_CompoundExcited.mo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
within Modelica.Electrical.Machines.BasicMachines.DCMachines;
model DC_CompoundExcited "Compound excited linear DC machine"
extends Machines.Interfaces.PartialBasicDCMachine(
wNominal(start=1410*2*pi/60),
final ViNominal=VaNominal - (Machines.Thermal.convertResistance(
Ra,
TaRef,
alpha20a,
TaNominal) + Machines.Thermal.convertResistance(
Res,
TeRef,
alpha20e,
TeNominal))*IaNominal - Machines.Losses.DCMachines.brushVoltageDrop(brushParameters, IaNominal),
final psi_eNominal=Lme*IeNominal + excitationTurnsRatio*Lme*abs(IaNominal),
redeclare final Machines.Thermal.DCMachines.ThermalAmbientDCCE thermalAmbient(Te=TeOperational,
final Tse=TeOperational),
redeclare final Machines.Interfaces.DCMachines.ThermalPortDCCE thermalPort,
redeclare final Machines.Interfaces.DCMachines.ThermalPortDCCE internalThermalPort,
redeclare final Machines.Interfaces.DCMachines.PowerBalanceDCCE powerBalance(
final powerShuntExcitation=vee*iee,
final lossPowerShuntExcitation=ree.LossPower,
final powerSeriesExcitation=ves*ies,
final lossPowerSeriesExcitation=res.LossPower),
core(final w=airGapDC.w));
parameter SI.Current IeNominal(start=1)
"Nominal shunt excitation current" annotation (Dialog(tab="Excitation"));
parameter SI.Resistance Res(start=0.01) "Series excitation resistance at TeRef"
annotation (Dialog(tab="Excitation"));
parameter SI.Resistance Ree(start=100) "Shunt excitation resistance at TeRef"
annotation (Dialog(tab="Excitation"));
parameter SI.Temperature TeRef(start=293.15) "Reference temperature of excitation resistance"
annotation (Dialog(tab="Excitation"));
parameter Machines.Thermal.LinearTemperatureCoefficient20 alpha20e(start=0)
"Temperature coefficient of excitation resistance" annotation (Dialog(tab="Excitation"));
parameter SI.Inductance Le(start=1) "Total field excitation inductance"
annotation (Dialog(tab="Excitation"));
parameter Real sigmae(
min=0,
max=0.99,
start=0) "Stray fraction of total excitation inductance"
annotation (Dialog(tab="Excitation"));
parameter SI.Temperature TeNominal(start=293.15) "Nominal series excitation temperature"
annotation (Dialog(tab="Nominal parameters"));
parameter SI.Temperature TeOperational(start=293.15) "Operational series excitation temperature"
annotation (Dialog(group="Operational temperatures", enable=not useThermalPort));
parameter Real excitationTurnsRatio(start=-0.005) "Ratio of series excitation turns over shunt excitation turns"
annotation (Dialog(tab="Excitation"));
output SI.Voltage vee=pin_eep.v - pin_en.v "Field shunt excitation voltage";
output SI.Voltage ves=pin_esp.v - pin_en.v "Field series excitation voltage";
output SI.Current iee=pin_eep.i "Field shunt excitation current";
output SI.Current ies=pin_esp.i "Field series excitation current";
Machines.BasicMachines.Components.AirGapDC airGapDC(
final turnsRatio=turnsRatio,
final Le=Lme,
final quasiStatic=quasiStatic) annotation (Placement(transformation(extent={{-10,-10},{10,10}}, rotation=270)));
Machines.BasicMachines.Components.CompoundDCExcitation compoundDCExcitation(final excitationTurnsRatio=
excitationTurnsRatio) annotation (Placement(transformation(extent={{-10,-30},{10,-10}})));
Modelica.Electrical.Analog.Basic.Ground ground
annotation (Placement(transformation(extent={{-30,-30},{-10,-10}})));
Modelica.Electrical.Analog.Basic.Resistor res(
final R=Res,
final T_ref=TeRef,
final alpha=Machines.Thermal.convertAlpha(alpha20e, TeRef),
final useHeatPort=true)
annotation (Placement(transformation(
origin={-80,50},
extent={{-10,10},{10,-10}},
rotation=270)));
Machines.BasicMachines.Components.InductorDC lesigmas(final L=Lesigma*excitationTurnsRatio,
final quasiStatic=quasiStatic)
annotation (Placement(transformation(
extent={{-10,-10},{10,10}},
rotation=270,
origin={-80,20})));
Modelica.Electrical.Analog.Interfaces.PositivePin pin_esp "Positive series excitation pin"
annotation (Placement(transformation(extent={{-110,70},{-90,50}})));
Modelica.Electrical.Analog.Interfaces.NegativePin pin_en
"Negative series excitation pin" annotation (Placement(transformation(
extent={{-90,10},{-110,-10}})));
Modelica.Electrical.Analog.Interfaces.PositivePin pin_eep "Positive series excitation pin"
annotation (Placement(transformation(extent={{-110,-50},{-90,-70}})));
Modelica.Electrical.Analog.Basic.Resistor ree(
final R=Ree,
final T_ref=TeRef,
final alpha=Machines.Thermal.convertAlpha(alpha20e, TeRef),
final useHeatPort=true)
annotation (Placement(transformation(
origin={-80,-60},
extent={{-10,10},{10,-10}},
rotation=0)));
Machines.BasicMachines.Components.InductorDC lesigmae(final L=Lesigma, final quasiStatic=quasiStatic)
annotation (Placement(transformation(
extent={{-10,-10},{10,10}},
rotation=0,
origin={-56,-60})));
protected
final parameter SI.Inductance Lme=Le*(1 - sigmae) "Main part of excitation inductance";
final parameter SI.Inductance Lesigma=Le*sigmae "Stray part of excitation inductance" annotation (Evaluate=true);
equation
connect(airGapDC.pin_ap, la.n) annotation (Line(
points={{10,10},{10,60}}, color={0,0,255}));
connect(airGapDC.support, internalSupport) annotation (Line(
points={{-10,0},{-40,0},{-40,-90},{60,-90},{60,-100}}));
connect(airGapDC.flange, inertiaRotor.flange_a) annotation (Line(
points={{10,0},{70,0},{70,0}}));
connect(pin_esp, res.p) annotation (Line(points={{-100,60},{-80,60}}, color={0,0,255}));
connect(res.n, lesigmas.p) annotation (Line(points={{-80,40},{-80,30}}, color={0,0,255}));
connect(airGapDC.pin_en, compoundDCExcitation.pin_n) annotation (Line(
points={{-10,-10},{-10,-10}}, color={0,0,255}));
connect(compoundDCExcitation.pin_p, airGapDC.pin_ep) annotation (Line(
points={{10,-10},{10,-10}}, color={0,0,255}));
connect(airGapDC.pin_en, ground.p) annotation (Line(
points={{-10,-10},{-20,-10}}, color={0,0,255}));
connect(compoundDCExcitation.pin_sen, pin_en) annotation (Line(
points={{-10,-30},{-60,-30},{-60,0},{-100,0}},
color={0,0,255}));
connect(compoundDCExcitation.pin_sep, lesigmas.n)
annotation (Line(points={{-2,-30},{-2,-40},{-80,-40},{-80,10}}, color={0,0,255}));
connect(airGapDC.pin_an, brush.p) annotation (Line(
points={{-10,10},{-10,60}}, color={0,0,255}));
connect(res.heatPort, internalThermalPort.heatPortSeriesExcitation)
annotation (Line(points={{-70,50},{-60,50},{-60,40},{50,40},{50,-80},{0,-80}}, color={191,0,0}));
connect(compoundDCExcitation.pin_sen, compoundDCExcitation.pin_en)
annotation (Line(points={{-10,-30},{-10,-36},{2,-36},{2,-30}}, color={0,0,255}));
connect(pin_eep, ree.p) annotation (Line(points={{-100,-60},{-90,-60}}, color={0,0,255}));
connect(ree.n, lesigmae.p) annotation (Line(points={{-70,-60},{-66,-60}}, color={0,0,255}));
connect(lesigmae.n, compoundDCExcitation.pin_ep) annotation (Line(points={{-46,-60},{10,-60},{10,-29.8}}, color={0,0,255}));
connect(ree.heatPort, internalThermalPort.heatPortShuntExcitation)
annotation (Line(points={{-80,-50},{-80,-44},{50,-44},{50,-80},{0,-80}}, color={191,0,0}));
annotation (
defaultComponentName="dcse",
Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{
100,100}}), graphics={
Line(points={{-100,10},{-105,11},{-109,15},{-110,20},{-109,25},{-105,29},{-100,30}},
color={0,0,255}),
Line(points={{-100,30},{-105,31},{-109,35},{-110,40},{-109,45},{-105,49},{-100,50}},
color={0,0,255}),
Line(points={{-130,-34},{-129,-29},{-125,-25},{-120,-24},{-115,-25},{-111,-29},{-110,-34}},
color={0,0,255}),
Line(points={{-110,-34},{-109,-29},{-105,-25},{-100,-24},{-95,-25},{-91,-29},{-90,-34}},
color={0,0,255}),
Line(points={{-90,-34},{-89,-29},{-85,-25},{-80,-24},{-75,-25},{-71,-29},{-70,-34}},
color={0,0,255}),
Line(points={{-100,-50},{-100,-40},{-70,-40},{-70,-32}},color={0,0,255}),
Line(points={{-100,-10},{-100,-20},{-130,-20},{-130,-34}},
color={0,0,
255})}),
Documentation(info="<html>
<p><strong>Model of a DC Machine with compound excitation.</strong><br>
Armature resistance and inductance are modeled directly after the armature pins, then using a <em>AirGapDC</em> model.<br>
The machine models take the following loss effects into account:
</p>
<ul>
<li>heat losses in the temperature dependent armature winding resistance</li>
<li>heat losses in the temperature dependent excitation winding resistance</li>
<li>brush losses in the armature circuit</li>
<li>friction losses</li>
<li>core losses (only eddy current losses, no hysteresis losses)</li>
<li>stray load losses</li>
</ul>
<p>Saturation is modelled <em>AirGapDC</em> model.<br>
Compound excitation has to be connected by the user's external circuit.
<br><strong>Default values for machine's parameters (a realistic example) are:</strong><br></p>
<table>
<tr>
<td>stator's moment of inertia</td>
<td>0.29</td><td>kg.m2</td>
</tr>
<tr>
<td>rotor's moment of inertia</td>
<td>0.15</td><td>kg.m2</td>
</tr>
<tr>
<td>nominal armature voltage</td>
<td>100</td><td>V</td>
</tr>
<tr>
<td>nominal armature current</td>
<td>100</td><td>A</td>
</tr>
<tr>
<td>nominal torque</td>
<td>63.66</td><td>Nm</td>
</tr>
<tr>
<td>nominal speed</td>
<td>1410</td><td>rpm</td>
</tr>
<tr>
<td>nominal mechanical output</td>
<td>9.4</td><td>kW</td>
</tr>
<tr>
<td>efficiency</td>
<td>94.0</td><td>% only armature</td>
</tr>
<tr>
<td>armature resistance</td>
<td>0.05</td><td>Ohm at reference temperature</td>
</tr>
<tr>
<td>reference temperature TaRef</td>
<td>20</td><td>°C</td>
</tr>
<tr>
<td>temperature coefficient alpha20a </td>
<td>0</td><td>1/K</td>
</tr>
<tr>
<td>armature inductance</td>
<td>0.0015</td><td>H</td>
</tr>
<tr>
<td>excitation resistance</td>
<td>0.01</td><td>Ohm at reference temperature</td>
</tr>
<tr>
<td>reference temperature TeRef</td>
<td>20</td><td>°C</td>
</tr>
<tr>
<td>temperature coefficient alpha20e</td>
<td>0</td><td>1/K</td>
</tr>
<tr>
<td>excitation inductance</td>
<td>0.0005</td><td>H</td>
</tr>
<tr>
<td>stray part of excitation inductance</td>
<td>0</td><td> </td>
</tr>
<tr>
<td>armature nominal temperature TaNominal</td>
<td>20</td><td>°C</td>
</tr>
<tr>
<td>series excitation nominal temperature TeNominal</td>
<td>20</td><td>°C</td>
</tr>
<tr>
<td>armature operational temperature TaOperational</td>
<td>20</td><td>°C</td>
</tr>
<tr>
<td>series excitation operational temperature TeOperational</td>
<td>20</td><td>°C</td>
</tr>
</table>
Armature resistance resp. inductance include resistance resp. inductance of commutating pole winding and
compensation winding, if present.<br>
Parameter nominal armature voltage includes voltage drop of series excitation;<br>
but for output the voltage is split into:<br>
va = armature voltage without voltage drop of series excitation<br>
ve = voltage drop of series excitation
</html>"));
end DC_CompoundExcited;