mTools a collection of function I regularly use.
You can install the development version of mTools from GitHub with:
# install.packages("devtools")
devtools::install_github("m-mburu/mTools")
library(mTools)
This is a basic example which shows you how to solve a common problem:
iris_head <- head(iris)
data_table(iris_head)
data("diabetes")
library(MASS)
library(knitr)
library(broom)
model <- glm(Outcome ~ .,
family = binomial(),
data = diabetes)
DT_tidy_model(model, round_digts = 2,
tidy_function = "tidy",
output_function = "kable",
coefficient_name = "estimate",
coefficient_name_new = "ODDS Ratio 95% CI",
exp_estimate = TRUE,
coefficient_ci= TRUE,
confint_level = .95)
#> Waiting for profiling to be done...
term | ODDS Ratio 95% CI | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0[0 0] | 0.72 | -11.73 | 0.00 |
Pregnancies | 1.13[1.06 1.21] | 0.03 | 3.84 | 0.00 |
Glucose | 1.04[1.03 1.04] | 0.00 | 9.48 | 0.00 |
BloodPressure | 0.99[0.98 1] | 0.01 | -2.54 | 0.01 |
SkinThickness | 1[0.99 1.01] | 0.01 | 0.09 | 0.93 |
Insulin | 1[1 1] | 0.00 | -1.32 | 0.19 |
BMI | 1.09[1.06 1.13] | 0.02 | 5.95 | 0.00 |
DiabetesPedigreeFunction | 2.57[1.44 4.66] | 0.30 | 3.16 | 0.00 |
Age | 1.01[1 1.03] | 0.01 | 1.59 | 0.11 |
DT_tidy_model(model,
tidy_function ="glance" ,
output_function = "kable")
null.deviance | df.null | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|
993.4839 | 767 | -361.7227 | 741.4454 | 783.2395 | 723.4454 | 759 | 768 |