-
Notifications
You must be signed in to change notification settings - Fork 455
/
aggregation.go
194 lines (158 loc) · 4.48 KB
/
aggregation.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright (c) 2018 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package temporal
import (
"fmt"
"math"
"time"
"github.com/m3db/m3/src/query/executor/transform"
"github.com/m3db/m3/src/query/ts"
)
const (
// AvgType calculates the average of all values in the specified interval.
AvgType = "avg_over_time"
// CountType calculates count of all values in the specified interval.
CountType = "count_over_time"
// MinType calculates the minimum of all values in the specified interval.
MinType = "min_over_time"
// MaxType calculates the maximum of all values in the specified interval.
MaxType = "max_over_time"
// SumType calculates the sum of all values in the specified interval.
SumType = "sum_over_time"
// StdDevType calculates the standard deviation of all values in the specified interval.
StdDevType = "stddev_over_time"
// StdVarType calculates the standard variance of all values in the specified interval.
StdVarType = "stdvar_over_time"
)
type aggFunc func([]float64) float64
var (
aggFuncs = map[string]aggFunc{
AvgType: avgOverTime,
CountType: countOverTime,
MinType: minOverTime,
MaxType: maxOverTime,
SumType: sumOverTime,
StdDevType: stddevOverTime,
StdVarType: stdvarOverTime,
}
)
type aggProcessor struct {
aggFunc aggFunc
}
func (a aggProcessor) Init(op baseOp, controller *transform.Controller, opts transform.Options) Processor {
return &aggNode{
controller: controller,
op: op,
aggFunc: a.aggFunc,
}
}
// NewAggOp creates a new base temporal transform with a specified node.
func NewAggOp(args []interface{}, optype string) (transform.Params, error) {
if aggregationFunc, ok := aggFuncs[optype]; ok {
a := aggProcessor{
aggFunc: aggregationFunc,
}
return newBaseOp(args, optype, a)
}
return nil, fmt.Errorf("unknown aggregation type: %s", optype)
}
type aggNode struct {
op baseOp
controller *transform.Controller
aggFunc func([]float64) float64
}
func (a *aggNode) Process(datapoints ts.Datapoints, _ time.Time) float64 {
return a.aggFunc(datapoints.Values())
}
func avgOverTime(values []float64) float64 {
sum, count := sumAndCount(values)
return sum / count
}
func countOverTime(values []float64) float64 {
_, count := sumAndCount(values)
if count == 0 {
return math.NaN()
}
return count
}
func minOverTime(values []float64) float64 {
var seenNotNaN bool
min := math.Inf(1)
for _, v := range values {
if !math.IsNaN(v) {
seenNotNaN = true
min = math.Min(min, v)
}
}
if !seenNotNaN {
return math.NaN()
}
return min
}
func maxOverTime(values []float64) float64 {
var seenNotNaN bool
max := math.Inf(-1)
for _, v := range values {
if !math.IsNaN(v) {
seenNotNaN = true
max = math.Max(max, v)
}
}
if !seenNotNaN {
return math.NaN()
}
return max
}
func sumOverTime(values []float64) float64 {
sum, _ := sumAndCount(values)
return sum
}
func stddevOverTime(values []float64) float64 {
return math.Sqrt(stdvarOverTime(values))
}
func stdvarOverTime(values []float64) float64 {
var aux, count, mean float64
for _, v := range values {
if !math.IsNaN(v) {
count++
delta := v - mean
mean += delta / count
aux += delta * (v - mean)
}
}
if count == 0 {
return math.NaN()
}
return aux / count
}
func sumAndCount(values []float64) (float64, float64) {
sum := 0.0
count := 0.0
for _, v := range values {
if !math.IsNaN(v) {
sum += v
count++
}
}
if count == 0 {
return math.NaN(), 0
}
return sum, count
}