Skip to content

machinereading/eld-2018

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

eld-2018

공유를 위한 eld 모듈입니다.

Introduction

https://github.com/lephong/mulrel-nel 의 모델을 기반으로 작업한 모델입니다.

Environment

virtual or conda environment with python 3.6 is recommended

execute pip3 install -r requirements.txt

Train

For train, you have to make data files(cs_train.conll, cs_train.tsv) with the same format of test or dev files in the same directory. To train a 3-relation ment-norm model, from the main folder run

python -u -m nel.main --mode train --n_rels 3 --mulrel_type ment-norm

Using a GTX 1080 Ti GPU it will take about 1 hour. The output is a model saved in two files: model.config and model.state_dict .

Evaluation

Execute

python -u -m nel.main --mode eval

Test for plain text

Execute

python -u -m nel.main --mode test --input_file [FILENAME]

It shows the result of entity linking for FILENAME Input file should contain each input document per one line. Input file template is shown in test_text.txt

To use ETRI Module

After installing ETRI Module, change host and port at nel/etri.py, line 11 and 12.

kb-ref files

You can download required files from here.

About

공유를 위한 eld 모듈입니다.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages