You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In nested_cv.py nested_cv_param_search() add train and test indices to cols and results_dict:
cols = [
"param_search",
"cv_results",
"best_estimator",
"conf_matrix",
"predicted_labels",
"true_labels",
"train_indices", #add this line
"test_indices" #add this line
]
results_dict["train_indices"].append(train) #add this line
results_dict["test_indices"].append(test) #add this line
results_dict["predicted_labels"].append(cv_obj.predict(x_test))
results_dict["true_labels"].append(y_test)
results_dict["cv_results"].append(cv_obj.cv_results_)
results_dict["best_estimator"].append(cv_obj.best_estimator_)
results_dict["conf_matrix"].append(confusion_matrix(y_test, cv_obj.predict(x_test), normalize=None))
in sklearn_pipeline_permuter.py metric_summary() get test indices and add it to df_metric:
for param_key, param_value in self.param_searches.items():
...
test_indices = np.array(param_value["test_indices"], dtype="object").ravel()
...
df_metric["test_indices"] = [test_indices]
for key in param_values:
if "test" in key:
if "test_indices" in key:
continue
Optional: Find a more elegant way to exclude test_indices from metric calculation ;)
The text was updated successfully, but these errors were encountered:
nested_cv_param_search()
add train and test indices tocols
andresults_dict
:metric_summary()
get test indices and add it todf_metric
:test_indices
from metric calculation ;)The text was updated successfully, but these errors were encountered: