-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
234 lines (188 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import matplotlib.pyplot as plt
# Constants
C = 299792458 # Speed of light in m/s
delta_t = 5
h = 6.62607015e-34 # Planck's constant in m^2 kg / s
class GlobalTime:
def __init__(self):
self.phi_history = [0] * delta_t # Initialize Φ history for the delay period
self.current_time = 0
self.time_flow_rate = 1
self.dt = 0.01 # Small time step for RK4
self.time_flow_rates = [] # Keep track of time flow rate for plotting
def calculate_phi_derivative(self, particles):
phi_delayed = self.phi_history[-delta_t]
s_t = np.random.normal(0, 0.01) # Simulate spontaneous fluctuations
g_phi_t = -0.1 * phi_delayed # Generative faculty adjustment
states = np.array([p.state for p in particles])
mean_state = np.mean(states, axis=0)
variance = np.var(states, axis=0)
# Directive and adaptive faculties influence
return s_t + g_phi_t + np.linalg.norm(mean_state) + np.linalg.norm(variance)
def update_phi(self, particles):
# Update Φ using a 4th-order Runge-Kutta method
k1 = self.dt * self.calculate_phi_derivative(particles)
k2 = self.dt * self.calculate_phi_derivative(particles) # Corrected call
k3 = self.dt * self.calculate_phi_derivative(particles) # Corrected call
k4 = self.dt * self.calculate_phi_derivative(particles) # Corrected call
phi_update = (k1 + 2*k2 + 2*k3 + k4) / 6
self.phi_history.append(self.phi_history[-1] + phi_update)
if len(self.phi_history) > delta_t:
self.phi_history.pop(0)
def update_time_flow(self):
current_phi = self.phi_history[-1]
k = 0.05 # Sensitivity factor for Φ's effect on time flow rate
self.time_flow_rate = 1 + k * np.tanh(current_phi)
self.time_flow_rates.append(self.time_flow_rate) # For plotting
def update_current_time(self):
self.current_time += self.time_flow_rate * self.dt
class QuantumParticle:
def __init__(self, state, velocity):
self.state = np.array(state, dtype=np.float64) # Assuming a vector state for simplicity
self.velocity = np.array(velocity, dtype=np.float64) # Particle velocity
# Simplified model for Hamiltonian dynamics; real applications would need specific H
self.H = np.eye(len(state)) # Identity matrix as placeholder
self.dilated_times = [] # Tracking dilated time for visualization
def update_state(self, dt, global_time):
# Update quantum state based on ATH-modified Lorentz factor and Hamiltonian
lorentz_factor = 1 / np.sqrt(1 - np.linalg.norm(self.velocity)**2 / C**2) # Classical Lorentz factor
# Integrate ATH effect
lorentz_factor_ath = lorentz_factor * (1 + global_time.phi_history[-1])
effective_dt = dt * lorentz_factor_ath
# Simplified quantum state evolution; real dynamics would involve solving Schrödinger's equation
self.state = self.state + np.dot(self.H, self.state) * effective_dt
self.state /= np.linalg.norm(self.state) # Normalize the state
def calculate_dilated_time(self, dt, global_time):
# Calculate time dilation using ATH-modified Lorentz factor
lorentz_factor = 1 / np.sqrt(1 - np.linalg.norm(self.velocity)**2 / C**2)
lorentz_factor_ath = lorentz_factor * (1 + global_time.phi_history[-1])
dilated_time = dt * lorentz_factor_ath
self.dilated_times.append(dilated_time) # For visualization
return dilated_time
class ActiveTimeEffect:
def __init__(self, ath_parameter):
self.ath_parameter = ath_parameter # Parameter to represent ATH effect
def modify_lorentz_factor(self, velocity):
# Modify Lorentz factor for time dilation with ATH effect
gamma = 1 / np.sqrt(1 - (velocity / C)**2)
return gamma * (1 + self.ath_parameter)
def modify_energy_levels(self, particle, gamma):
# Modify energy levels of the particle based on ATH-influenced Lorentz factor
# Check if the object is a CesiumAtom and use the correct attribute
if isinstance(particle, CesiumAtom):
modified_levels = [E * gamma for E in particle.energy_levels]
else:
modified_levels = [E * gamma for E in particle.energy_states]
return modified_levels
class CesiumAtom:
def __init__(self):
# Define cesium energy levels (example values)
self.energy_levels = [-1.84e-23, -1.81e-23, -1.78e-23]
def calculate_transitions(self):
# Compute transition frequencies
self.transition_frequencies = {}
for i in range(len(self.energy_levels)):
for j in range(i+1, len(self.energy_levels)):
freq = (self.energy_levels[j] - self.energy_levels[i]) / h
self.transition_frequencies[(i, j)] = freq
def run_simulation(use_active_time, max_iterations=1000):
global_time = GlobalTime()
ath_effect = ActiveTimeEffect(0.05) # Example ATH parameter
cesium_atoms = [CesiumAtom() for _ in range(5)]
particles = [QuantumParticle([1.0, 0.0], np.random.uniform(-0.1, 0.1, 3) * C) for _ in range(5)]
intrinsic_times = []
for iteration in range(max_iterations):
if use_active_time:
global_time.update_phi(particles)
global_time.update_time_flow()
global_time.update_current_time()
# Apply ATH effects on cesium atoms
for atom in cesium_atoms:
gamma = ath_effect.modify_lorentz_factor(0.1 * C) # Example velocity
atom.energy_levels = ath_effect.modify_energy_levels(atom, gamma)
atom.calculate_transitions()
intrinsic_times.append(global_time.current_time)
for particle in particles:
particle.update_state(global_time.dt, global_time)
particle.calculate_dilated_time(global_time.dt, global_time)
# Return a tuple of results
return cesium_atoms, intrinsic_times, global_time.time_flow_rates, [p.dilated_times for p in particles]
# Plotting functions as defined in Code 1
def plot_transition_frequencies(cesium_atoms, with_ath=True):
for i, atom in enumerate(cesium_atoms):
transitions = list(atom.transition_frequencies.keys())
frequencies = list(atom.transition_frequencies.values())
plt.figure(figsize=(10, 6))
plt.bar(range(len(transitions)), frequencies, tick_label=[f'{t[0]} to {t[1]}' for t in transitions])
plt.xlabel('Transition')
plt.ylabel('Frequency (Hz)')
title = f"Cesium Atom {i+1} Transition Frequencies {'with' if with_ath else 'without'} ATH"
plt.title(title)
plt.yscale('log') # Use log scale due to high frequency values
plt.show()
def print_transition_frequencies(cesium_atoms, scenario):
print(f"Transition Frequencies {scenario}:")
for i, atom in enumerate(cesium_atoms):
print(f"Cesium Atom {i+1}:")
for transition, frequency in atom.transition_frequencies.items():
print(f" Transition {transition}: {frequency:.6e} Hz")
def plot_intrinsic_time_accumulation(intrinsic_times_with, intrinsic_times_without):
plt.figure(figsize=(12, 6))
plt.plot(intrinsic_times_with, label='With Active Time')
plt.plot(intrinsic_times_without, label='Without Active Time', linestyle='--')
plt.xlabel('Iteration')
plt.ylabel('Accumulated Intrinsic Time')
plt.title('Accumulation of Intrinsic Time Over Iterations')
plt.legend()
plt.show()
def plot_classical_vs_ath_time_evolution(intrinsic_times_with, intrinsic_times_without):
plt.figure(figsize=(12, 6))
plt.plot(intrinsic_times_with, label='With ATH')
plt.plot(intrinsic_times_without, label='Classical (Without ATH)', linestyle='--')
plt.title('Comparative Time Evolution: Classical vs. ATH')
plt.xlabel('Iteration')
plt.ylabel('Intrinsic Time')
plt.legend()
plt.show()
def plot_time_dilation_comparison(dilated_times_with, dilated_times_without):
plt.figure(figsize=(12, 6))
# Assuming dilated_times_with and dilated_times_without contain lists of dilated times for each simulation step
average_dilated_time_with = np.mean([np.mean(times) for times in dilated_times_with])
average_dilated_time_without = np.mean([np.mean(times) for times in dilated_times_without])
plt.bar(['With ATH', 'Without ATH'], [average_dilated_time_with, average_dilated_time_without], color=['blue', 'orange'])
plt.ylabel('Average Dilated Time')
plt.title('Average Time Dilation: With ATH vs. Without ATH')
plt.show()
def print_average_time_dilation(dilated_times, scenario):
# Assuming dilated_times is a list of lists, where each inner list contains dilated times for a single particle
all_dilated_times = [time for particle_times in dilated_times for time in particle_times]
average_dilation = np.mean(all_dilated_times)
print(f"Average Time Dilation {scenario}: {average_dilation:.6f}") # Adjusted to show six decimal places
# Run the simulation for both scenarios
results_with_ath = run_simulation(use_active_time=True, max_iterations=1000)
results_without_ath = run_simulation(use_active_time=False, max_iterations=1000)
# Extracting results for scenarios with ATH
cesium_atoms_with_ath, intrinsic_times_with_ath, _, dilated_times_with_ath = results_with_ath
# Extracting results for scenarios without ATH
cesium_atoms_without_ath, intrinsic_times_without_ath, _, dilated_times_without_ath = results_without_ath
# Ensure transitions are calculated for both scenarios
for atom in cesium_atoms_with_ath + cesium_atoms_without_ath:
atom.calculate_transitions() # This ensures transition_frequencies is always set
# Now, print transition frequencies for both scenarios
print("\nTransition Frequencies with ATH:")
print_transition_frequencies(cesium_atoms_with_ath, "with ATH")
print("\nTransition Frequencies without ATH:")
print_transition_frequencies(cesium_atoms_without_ath, "without ATH")
# Plot transition frequencies for cesium atoms with ATH
plot_transition_frequencies(cesium_atoms_with_ath, with_ath=True)
# Plot transition frequencies for cesium atoms without ATH
plot_transition_frequencies(cesium_atoms_without_ath, with_ath=False)
# Plotting intrinsic time accumulation and comparative time evolution
plot_intrinsic_time_accumulation(intrinsic_times_with_ath, intrinsic_times_without_ath)
plot_classical_vs_ath_time_evolution(intrinsic_times_with_ath, intrinsic_times_without_ath)
# Plotting time dilation comparison
plot_time_dilation_comparison(dilated_times_with_ath, dilated_times_without_ath)
# Print average time dilation for both scenarios with more precision
print_average_time_dilation(dilated_times_with_ath, "with ATH")
print_average_time_dilation(dilated_times_without_ath, "without ATH")