Skip to content

marcovisentin/WGAN-GP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WGAN-GP

Example of greyscale WGAN-GP (GAN with Wasserstein Gradient Penalty Loss). To train the GAN run train_WGAN script.

Edit params file to personalise:

  • params['save_name'] = path to save directory
  • params['data_path'] = dataset path. IT NEEDS TO BE A NPZ FILE [SIZE_DATASETxHEIGHT*WIDTHx1].
  • params['buffer_size'] = dataset size (default 60000)
  • params['batch_size'] = bacth size (default 32)
  • params['noise_dim'] = noise (default 100)
  • params['epochs'] = number of epochs (default 3000)
  • params['num_exmaple_to_generate'] = number of image generated and saved every 25 epochs to track improvements.
  • params['disc_iterations'] = number of iteration of discriminator per iteration of the generator

Result after 700 epochs on a dataset of 6000 images (random height) of abdominal MRIs:

image_at_epoch_0700 Not physiologically plausible but surprisingly accurate in the detection of some of the structures (spine, galbladder, aorta, IVC).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages