|
| 1 | +/* |
| 2 | + * @lc app=leetcode id=221 lang=java |
| 3 | + * |
| 4 | + * [221] Maximal Square |
| 5 | + * |
| 6 | + * https://leetcode.com/problems/maximal-square/description/ |
| 7 | + * |
| 8 | + * algorithms |
| 9 | + * Medium (38.85%) |
| 10 | + * Total Accepted: 326.7K |
| 11 | + * Total Submissions: 840.2K |
| 12 | + * Testcase Example: '[["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]' |
| 13 | + * |
| 14 | + * Given an m x n binary matrix filled with 0's and 1's, find the largest |
| 15 | + * square containing only 1's and return its area. |
| 16 | + * |
| 17 | + * |
| 18 | + * Example 1: |
| 19 | + * |
| 20 | + * |
| 21 | + * Input: matrix = |
| 22 | + * [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] |
| 23 | + * Output: 4 |
| 24 | + * |
| 25 | + * |
| 26 | + * Example 2: |
| 27 | + * |
| 28 | + * |
| 29 | + * Input: matrix = [["0","1"],["1","0"]] |
| 30 | + * Output: 1 |
| 31 | + * |
| 32 | + * |
| 33 | + * Example 3: |
| 34 | + * |
| 35 | + * |
| 36 | + * Input: matrix = [["0"]] |
| 37 | + * Output: 0 |
| 38 | + * |
| 39 | + * |
| 40 | + * |
| 41 | + * Constraints: |
| 42 | + * |
| 43 | + * |
| 44 | + * m == matrix.length |
| 45 | + * n == matrix[i].length |
| 46 | + * 1 <= m, n <= 300 |
| 47 | + * matrix[i][j] is '0' or '1'. |
| 48 | + * |
| 49 | + * |
| 50 | + */ |
| 51 | + |
| 52 | +class Solution { |
| 53 | + public int maximalSquare(char[][] matrix) { |
| 54 | + int maxRow = matrix.length, maxCol = maxRow > 0 ? matrix[0].length : 0; |
| 55 | + int maxSqrLen = 0; |
| 56 | + for (int row = 0; row < maxRow; row++) { |
| 57 | + for (int col = 0; col < maxCol; col++) { |
| 58 | + |
| 59 | + // Check for the maximum square size relative to current element |
| 60 | + // 1 - > ? |
| 61 | + // | |
| 62 | + // v |
| 63 | + // ? |
| 64 | + // Searching from left to right and top to bottom |
| 65 | + if (matrix[row][col] == '1') { |
| 66 | + int sqrLen = 1; |
| 67 | + boolean isExpandSquare = true; |
| 68 | + |
| 69 | + // If square is expandable or not at the lower edge and/or right edge |
| 70 | + // of the matrix |
| 71 | + while (sqrLen + row < maxRow && sqrLen + col < maxCol && isExpandSquare) { |
| 72 | + |
| 73 | + // Look for zero horizontally for expansion |
| 74 | + for (int i = col; i <= sqrLen + col; i++) { |
| 75 | + if (matrix[row + sqrLen][i] == '0') { |
| 76 | + isExpandSquare = false; |
| 77 | + break; |
| 78 | + } |
| 79 | + } |
| 80 | + |
| 81 | + // Look for zero vertically for expansion |
| 82 | + for (int i = row; i <= sqrLen + row; i++) { |
| 83 | + if (matrix[i][col + sqrLen] == '0') { |
| 84 | + isExpandSquare = false; |
| 85 | + break; |
| 86 | + } |
| 87 | + } |
| 88 | + |
| 89 | + if (isExpandSquare) |
| 90 | + sqrLen++; |
| 91 | + } |
| 92 | + |
| 93 | + if (maxSqrLen < sqrLen) { |
| 94 | + maxSqrLen = sqrLen; |
| 95 | + } |
| 96 | + } |
| 97 | + } |
| 98 | + } |
| 99 | + return maxSqrLen * maxSqrLen; |
| 100 | + } |
| 101 | +} |
| 102 | + |
| 103 | + |
| 104 | + |
| 105 | +// class Solution { |
| 106 | +// public int maximalSquare(char[][] matrix) { |
| 107 | +// // Check if matrix is empty |
| 108 | +// if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0; |
| 109 | +// // Notes: |
| 110 | +// // 1's ands 0's are in Char format? |
| 111 | +// |
| 112 | +// // [["1","0","1","0","0"] |
| 113 | +// // ["1","0","1","1","1"] |
| 114 | +// // ["1","1","1","1","1"] |
| 115 | +// // ["1","0","0","1","0"]] |
| 116 | +// // |
| 117 | +// // [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] |
| 118 | +// |
| 119 | +// // Approach: |
| 120 | +// // BRUTE FORCE: |
| 121 | +// // Loop over matrix m x n |
| 122 | +// // Check bottom row and right column for 1's |
| 123 | +// // Create a function for checking for surrounding 1's and 0's |
| 124 | +// // if (all 1's) |
| 125 | +// // updateArea; |
| 126 | +// // if (bottom row || right col nomore) |
| 127 | +// // break |
| 128 | +// |
| 129 | +// // Right and bottom search |
| 130 | +// |
| 131 | +// // First check if current index is 1, otherwise return 0 |
| 132 | +// // Check if next nth binary is 1, if so, check the next nth, while recording |
| 133 | +// // how far it went so far. (this will be used how far to search mth wise or |
| 134 | +// // vertically) |
| 135 | +// // When it horizontal search reaches the closest zero break and go to the |
| 136 | +// // next mth and repeat certain times the furthest horizontal search reached |
| 137 | +// |
| 138 | +// // at the end, get the minimum value of the horizontal searches to get the |
| 139 | +// // biggest area of the matrix at the given start location |
| 140 | +// |
| 141 | +// int rowMax = matrix.length; |
| 142 | +// int colMax = matrix[0].length; |
| 143 | +// int maxSquareSide = 0; |
| 144 | +// for (int row = 0; row < rowMax - 1; row++) { // Exclude last row and col |
| 145 | +// for (int col = 0; col < colMax - 1; col++) { |
| 146 | +// |
| 147 | +// // find furthest non 0 from the right |
| 148 | +// int furthestNonZeroSubCol = findFurthestNonZeroSubCol(matrix, row, col, colMax); |
| 149 | +// maxSquareSide = Math.max(maxSquareSide, |
| 150 | +// evaluateOneSquare(matrix, row, col, furthestNonZeroSubCol)); |
| 151 | +// |
| 152 | +// } |
| 153 | +// } |
| 154 | +// } |
| 155 | +// |
| 156 | +// public int findFurthestNonZeroSubCol(char[][] matrix, int row, int col, int colMax) { |
| 157 | +// int furthestNonZeroSubCol = 0; |
| 158 | +// for (int i = col; i < colMax; i++) { |
| 159 | +// if (matrix[row][i] == '0') break; |
| 160 | +// else furthestNonZeroSubCol++; |
| 161 | +// } |
| 162 | +// return furthestNonZeroSubCol; |
| 163 | +// } |
| 164 | +// |
| 165 | +// public int evaluateOneSquare(char[][] matrix, int row, int col, int size) { |
| 166 | +// while (++row <= size) { |
| 167 | +// int furthestNonZeroSubCol = findFurthestNonZeroSubCol(matrix, row, col, size); |
| 168 | +// if (furthestNonZeroSubCol <= size) |
| 169 | +// continue; |
| 170 | +// } |
| 171 | +// } |
| 172 | +// } |
0 commit comments