Recurrent functions which use the Hilbert, Peano and Z curves to fill squares of many
In this repo are two recursive funtions:
it can break down from any dxd square which is not a multiple of a prime number
it has an asymetric
it can break down from any
This is the Peano-Hilbert version of the Hilbert-Peano function I have imple- mented before.
Here, we are using a symetric z-base when breaking from a peano curve. Now, we have a completely centered solution for square 2D space filling curves.
Although, 3D versions. form other authors, using convenient bit representations do exist.
[[106 107 110 108 112 114 116 117 138 139 142 140]
[104 105 111 109 113 115 118 119 136 137 143 141]
[ 97 99 102 103 120 121 127 125 129 131 134 135]
[ 96 98 100 101 122 123 126 124 128 130 132 133]
[ 92 94 91 90 69 68 66 64 60 62 59 58]
[ 93 95 89 88 71 70 67 65 61 63 57 56]
[ 87 86 83 81 77 79 73 72 55 54 51 49]
[ 85 84 82 80 76 78 75 74 53 52 50 48]
[ 10 11 14 12 16 18 20 21 42 43 46 44]
[ 8 9 15 13 17 19 22 23 40 41 47 45]
[ 1 3 6 7 24 25 31 29 33 35 38 39]
[ 0 2 4 5 26 27 30 28 32 34 36 37]]
[[ 47 48 49 58 59 60 83 84 85 94 95 96]
[ 46 51 50 57 56 61 82 87 86 93 92 97]
[ 45 52 53 54 55 62 81 88 89 90 91 98]
[ 44 43 42 65 64 63 80 79 78 101 100 99]
[ 37 38 41 66 69 70 73 74 77 102 105 106]
[ 36 39 40 67 68 71 72 75 76 103 104 107]
[ 35 34 27 26 25 24 119 118 117 116 109 108]
[ 32 33 28 19 20 23 120 123 124 115 110 111]
[ 31 30 29 18 21 22 121 122 125 114 113 112]
[ 4 5 6 17 14 13 130 129 126 137 138 139]
[ 3 2 7 16 15 12 131 128 127 136 141 140]
[ 0 1 8 9 10 11 132 133 134 135 142 143]]
*1: WARNING: This type of mappings is rare for deep learning image recognition tasks and does probably not work on pretrained networks, since they are most of the time either convolutional and/or in some kind of sense trained on a simple stack reshape of the input images.