-
Notifications
You must be signed in to change notification settings - Fork 45
/
hoelder.v
505 lines (461 loc) · 22.4 KB
/
hoelder.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop .
Require Import signed reals ereal topology normedtype sequences real_interval.
Require Import esum measure lebesgue_measure lebesgue_integral numfun exp.
Require Import convex itv.
(**md**************************************************************************)
(* # Hoelder's Inequality *)
(* *)
(* This file provides Hoelder's inequality. *)
(* ``` *)
(* 'N[mu]_p[f] := (\int[mu]_x (`|f x| `^ p)%:E) `^ p^-1 *)
(* The corresponding definition is Lnorm. *)
(* ``` *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "'N[ mu ]_ p [ F ]"
(at level 5, F at level 36, mu at level 10,
format "'[' ''N[' mu ]_ p '/ ' [ F ] ']'").
(* for use as a local notation when the measure is in context: *)
Reserved Notation "'N_ p [ F ]"
(at level 5, F at level 36, format "'[' ''N_' p '/ ' [ F ] ']'").
Declare Scope Lnorm_scope.
HB.lock Definition Lnorm {d} {T : measurableType d} {R : realType}
(mu : {measure set T -> \bar R}) (p : \bar R) (f : T -> R) :=
match p with
| p%:E => (if p == 0%R then
mu (f @^-1` (setT `\ 0%R))
else
(\int[mu]_x (`|f x| `^ p)%:E) `^ p^-1)%E
| +oo%E => (if mu [set: T] > 0 then ess_sup mu (normr \o f) else 0)%E
| -oo%E => 0%E
end.
Canonical locked_Lnorm := Unlockable Lnorm.unlock.
Arguments Lnorm {d T R} mu p f.
Section Lnorm_properties.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.
Implicit Types (p : \bar R) (f g : T -> R) (r : R).
Local Notation "'N_ p [ f ]" := (Lnorm mu p f).
Lemma Lnorm1 f : 'N_1[f] = \int[mu]_x `|f x|%:E.
Proof.
rewrite unlock oner_eq0 invr1// poweRe1//.
by apply: eq_integral => t _; rewrite powRr1.
by apply: integral_ge0 => t _; rewrite powRr1.
Qed.
Lemma Lnorm_ge0 p f : 0 <= 'N_p[f].
Proof.
rewrite unlock; move: p => [r/=|/=|//].
by case: ifPn => // r0; exact: poweR_ge0.
by case: ifPn => // /ess_sup_ge0; apply => t/=.
Qed.
Lemma eq_Lnorm p f g : f =1 g -> 'N_p[f] = 'N_p[g].
Proof. by move=> fg; congr Lnorm; exact/funext. Qed.
Lemma Lnorm_eq0_eq0 r f : (0 < r)%R -> measurable_fun setT f ->
'N_r%:E[f] = 0 -> ae_eq mu [set: T] (fun t => (`|f t| `^ r)%:E) (cst 0).
Proof.
move=> r0 mf; rewrite unlock (gt_eqF r0) => /poweR_eq0_eq0 fp.
apply/ae_eq_integral_abs => //=.
apply: measurableT_comp => //.
apply: (@measurableT_comp _ _ _ _ _ _ (@powR R ^~ r)) => //.
exact: measurableT_comp.
under eq_integral => x _ do rewrite ger0_norm ?powR_ge0//.
by rewrite fp//; apply: integral_ge0 => t _; rewrite lee_fin powR_ge0.
Qed.
Lemma powR_Lnorm f r : r != 0%R ->
'N_r%:E[f] `^ r = \int[mu]_x (`| f x | `^ r)%:E.
Proof.
move=> r0; rewrite unlock (negbTE r0) -poweRrM mulVf// poweRe1//.
by apply: integral_ge0 => x _; rewrite lee_fin// powR_ge0.
Qed.
End Lnorm_properties.
#[global]
Hint Extern 0 (0 <= Lnorm _ _ _) => solve [apply: Lnorm_ge0] : core.
Notation "'N[ mu ]_ p [ f ]" := (Lnorm mu p f).
Section lnorm.
(* l-norm is just L-norm applied to counting *)
Context d {T : measurableType d} {R : realType}.
Local Open Scope ereal_scope.
Local Notation "'N_ p [ f ]" := (Lnorm [the measure _ _ of counting] p f).
Lemma Lnorm_counting p (f : R^nat) : (0 < p)%R ->
'N_p%:E [f] = (\sum_(k <oo) (`| f k | `^ p)%:E) `^ p^-1.
Proof.
move=> p0; rewrite unlock gt_eqF// ge0_integral_count// => k.
by rewrite lee_fin powR_ge0.
Qed.
End lnorm.
Section hoelder.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.
Implicit Types (p q : R) (f g : T -> R).
Let measurableT_comp_powR f p :
measurable_fun [set: T] f -> measurable_fun setT (fun x => f x `^ p)%R.
Proof. exact: (@measurableT_comp _ _ _ _ _ _ (@powR R ^~ p)). Qed.
Local Notation "'N_ p [ f ]" := (Lnorm mu p f).
Let integrable_powR f p : (0 < p)%R ->
measurable_fun [set: T] f -> 'N_p%:E[f] != +oo ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E).
Proof.
move=> p0 mf foo; apply/integrableP; split.
apply: measurableT_comp => //; apply: measurableT_comp_powR.
exact: measurableT_comp.
rewrite ltey; apply: contra foo.
move=> /eqP/(@eqy_poweR _ _ p^-1); rewrite invr_gt0 => /(_ p0) <-.
rewrite unlock (gt_eqF p0); apply/eqP; congr (_ `^ _).
by apply/eq_integral => t _; rewrite [RHS]gee0_abs// lee_fin powR_ge0.
Qed.
Let hoelder0 f g p q : measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
'N_p%:E[f] = 0 -> 'N_1[(f \* g)%R] <= 'N_p%:E[f] * 'N_q%:E[g].
Proof.
move=> mf mg p0 q0 pq f0; rewrite f0 mul0e Lnorm1 [leLHS](_ : _ = 0)//.
rewrite (ae_eq_integral (cst 0)) => [|//||//|]; first by rewrite integral0.
- by do 2 apply: measurableT_comp => //; exact: measurable_funM.
- apply: filterS (Lnorm_eq0_eq0 p0 mf f0) => x /(_ I)[] /powR_eq0_eq0 + _.
by rewrite normrM => ->; rewrite mul0r.
Qed.
Let normalized p f x := `|f x| / fine 'N_p%:E[f].
Let normalized_ge0 p f x : (0 <= normalized p f x)%R.
Proof. by rewrite /normalized divr_ge0// fine_ge0// Lnorm_ge0. Qed.
Let measurable_normalized p f : measurable_fun [set: T] f ->
measurable_fun [set: T] (normalized p f).
Proof. by move=> mf; apply: measurable_funM => //; exact: measurableT_comp. Qed.
Let integral_normalized f p : (0 < p)%R -> 0 < 'N_p%:E[f] ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E) ->
\int[mu]_x (normalized p f x `^ p)%:E = 1.
Proof.
move=> p0 fpos ifp.
transitivity (\int[mu]_x (`|f x| `^ p / fine ('N_p%:E[f] `^ p))%:E).
apply: eq_integral => t _.
rewrite powRM//; last by rewrite invr_ge0 fine_ge0// Lnorm_ge0.
rewrite -[in LHS]powR_inv1; last by rewrite fine_ge0 // Lnorm_ge0.
by rewrite fine_poweR powRAC -powR_inv1 // powR_ge0.
have fp0 : 0 < \int[mu]_x (`|f x| `^ p)%:E.
rewrite unlock (gt_eqF p0) in fpos.
apply: gt0_poweR fpos; rewrite ?invr_gt0//.
by apply integral_ge0 => x _; rewrite lee_fin; exact: powR_ge0.
rewrite unlock (gt_eqF p0) -poweRrM mulVf ?(gt_eqF p0)// (poweRe1 (ltW fp0))//.
under eq_integral do rewrite EFinM muleC.
have foo : \int[mu]_x (`|f x| `^ p)%:E < +oo.
move/integrableP: ifp => -[_].
by under eq_integral do rewrite gee0_abs// ?lee_fin ?powR_ge0//.
rewrite integralZl//; apply/eqP; rewrite eqe_pdivrMl ?mule1.
- by rewrite fineK// gt0_fin_numE.
- by rewrite gt_eqF// fine_gt0// foo andbT.
Qed.
Lemma hoelder f g p q : measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
'N_1[(f \* g)%R] <= 'N_p%:E[f] * 'N_q%:E[g].
Proof.
move=> mf mg p0 q0 pq.
have [f0|f0] := eqVneq 'N_p%:E[f] 0%E; first exact: hoelder0.
have [g0|g0] := eqVneq 'N_q%:E[g] 0%E.
rewrite muleC; apply: le_trans; last by apply: hoelder0 => //; rewrite addrC.
by under eq_Lnorm do rewrite /= mulrC.
have {f0}fpos : 0 < 'N_p%:E[f] by rewrite lt0e f0 Lnorm_ge0.
have {g0}gpos : 0 < 'N_q%:E[g] by rewrite lt0e g0 Lnorm_ge0.
have [foo|foo] := eqVneq 'N_p%:E[f] +oo%E; first by rewrite foo gt0_mulye ?leey.
have [goo|goo] := eqVneq 'N_q%:E[g] +oo%E; first by rewrite goo gt0_muley ?leey.
pose F := normalized p f; pose G := normalized q g.
rewrite [leLHS](_ : _ = 'N_1[(F \* G)%R] * 'N_p%:E[f] * 'N_q%:E[g]); last first.
rewrite !Lnorm1; under [in RHS]eq_integral.
move=> x _; rewrite /F /G /normalized/=.
rewrite ger0_norm; last by rewrite mulr_ge0 ?divr_ge0 ?fine_ge0 ?Lnorm_ge0.
by rewrite mulrACA -normrM EFinM; over.
rewrite ge0_integralZr//; last 2 first.
- by do 2 apply: measurableT_comp => //; exact: measurable_funM.
- by rewrite lee_fin mulr_ge0// invr_ge0 fine_ge0// Lnorm_ge0.
rewrite -!muleA [X in _ * X](_ : _ = 1) ?mule1// EFinM muleACA.
rewrite (_ : _ * 'N_p%:E[f] = 1) ?mul1e; last first.
rewrite -[X in _ * X]fineK; last by rewrite ge0_fin_numE ?ltey// Lnorm_ge0.
by rewrite -EFinM mulVr ?unitfE ?gt_eqF// fine_gt0// fpos/= ltey.
rewrite -[X in _ * X]fineK; last by rewrite ge0_fin_numE ?ltey// Lnorm_ge0.
by rewrite -EFinM mulVr ?unitfE ?gt_eqF// fine_gt0// gpos/= ltey.
rewrite -(mul1e ('N_p%:E[f] * _)) -muleA lee_pmul ?mule_ge0 ?Lnorm_ge0//.
rewrite [leRHS](_ : _ = \int[mu]_x (F x `^ p / p + G x `^ q / q)%:E).
rewrite Lnorm1 ae_ge0_le_integral //.
- do 2 apply: measurableT_comp => //.
by apply: measurable_funM => //; exact: measurable_normalized.
- by move=> x _; rewrite lee_fin addr_ge0// divr_ge0// ?powR_ge0// ltW.
- by apply: measurableT_comp => //; apply: measurable_funD => //;
apply: measurable_funM => //; apply: measurableT_comp_powR => //;
exact: measurable_normalized.
apply/aeW => x _; rewrite lee_fin ger0_norm ?conjugate_powR ?normalized_ge0//.
by rewrite mulr_ge0// normalized_ge0.
under eq_integral do rewrite EFinD.
rewrite ge0_integralD//; last 4 first.
- by move=> x _; rewrite lee_fin mulr_ge0// ?invr_ge0 ?powR_ge0// ltW.
- apply: measurableT_comp => //; apply: measurable_funM => //.
by apply: measurableT_comp_powR => //; exact: measurable_normalized.
- by move=> x _; rewrite lee_fin mulr_ge0// ?invr_ge0 ?powR_ge0// ltW.
- apply: measurableT_comp => //; apply: measurable_funM => //.
by apply: measurableT_comp_powR => //; exact: measurable_normalized.
under eq_integral do rewrite EFinM.
rewrite [X in X + _]ge0_integralZr//; last 3 first.
- apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normalized.
- by move=> x _; rewrite lee_fin powR_ge0.
- by rewrite lee_fin invr_ge0 ltW.
under [X in _ + X]eq_integral => x _ do rewrite EFinM.
rewrite ge0_integralZr//; last 3 first.
- apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normalized.
- by move=> x _; rewrite lee_fin powR_ge0.
- by rewrite lee_fin invr_ge0 ltW.
rewrite integral_normalized//; last exact: integrable_powR.
rewrite integral_normalized//; last exact: integrable_powR.
by rewrite 2!mul1e -EFinD pq.
Qed.
End hoelder.
Section hoelder2.
Context {R : realType}.
Local Open Scope ring_scope.
Lemma hoelder2 (a1 a2 b1 b2 : R) (p q : R) :
0 <= a1 -> 0 <= a2 -> 0 <= b1 -> 0 <= b2 ->
0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->
a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 *
(b1 `^ q + b2 `^ q) `^ q^-1.
Proof.
move=> a10 a20 b10 b20 p0 q0 pq.
pose f a b n : R := match n with 0%nat => a | 1%nat => b | _ => 0 end.
have mf a b : measurable_fun setT (f a b) by [].
have := hoelder [the measure _ _ of counting] (mf a1 a2) (mf b1 b2) p0 q0 pq.
rewrite !Lnorm_counting//.
rewrite (nneseries_split 0 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite add0n ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= mulr0 normr0 powR0.
rewrite big_mkord 2!big_ord_recr/= big_ord0 add0e.
rewrite powRr1 ?normr_ge0 ?powRr1 ?normr_ge0//.
rewrite (nneseries_split 0 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF.
rewrite big_mkord 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite (nneseries_split 0 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF.
rewrite big_mkord 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite -EFinM invr1 powRr1; last by rewrite addr_ge0.
do 2 (rewrite ger0_norm; last by rewrite mulr_ge0).
by do 4 (rewrite ger0_norm; last by []).
Qed.
End hoelder2.
Section convex_powR.
Context {R : realType}.
Local Open Scope ring_scope.
Lemma convex_powR p : 1 <= p ->
convex_function `[0, +oo[%classic (@powR R ^~ p).
Proof.
move=> p1 t x y /[!inE] /= /[!in_itv] /= /[!andbT] x_ge0 y_ge0.
have p0 : 0 < p by rewrite (lt_le_trans _ p1).
rewrite !convRE; set w1 := `1-(t%:inum); set w2 := t%:inum.
have [->|w10] := eqVneq w1 0.
rewrite !mul0r !add0r; have [->|w20] := eqVneq w2 0.
by rewrite !mul0r powR0// gt_eqF.
by rewrite ge1r_powRZ// /w2 lt_neqAle eq_sym w20/=; apply/andP.
have [->|w20] := eqVneq w2 0.
by rewrite !mul0r !addr0 ge1r_powRZ// onem_le1// andbT lt0r w10 onem_ge0.
have [->|p_neq1] := eqVneq p 1.
by rewrite !powRr1// addr_ge0// mulr_ge0// /w2 ?onem_ge0.
have {p_neq1} {}p1 : 1 < p by rewrite lt_neqAle eq_sym p_neq1.
pose q := p / (p - 1).
have q1 : 1 <= q by rewrite /q ler_pdivlMr// ?mul1r ?gerBl// subr_gt0.
have q0 : 0 < q by rewrite (lt_le_trans _ q1).
have pq1 : p^-1 + q^-1 = 1.
rewrite /q invf_div -{1}(div1r p) -mulrDl addrCA subrr addr0.
by rewrite mulfV// gt_eqF.
rewrite -(@powRr1 _ (w1 * x `^ p + w2 * y `^ p)); last first.
by rewrite addr_ge0// mulr_ge0// ?powR_ge0// /w2 ?onem_ge0// itv_ge0.
have -> : 1 = p^-1 * p by rewrite mulVf ?gt_eqF.
rewrite powRrM (ge0_ler_powR (le_trans _ (ltW p1)))//.
- by rewrite nnegrE addr_ge0// mulr_ge0 /w2 ?onem_ge0.
- by rewrite nnegrE powR_ge0.
have -> : w1 * x + w2 * y = w1 `^ (p^-1) * w1 `^ (q^-1) * x +
w2 `^ (p^-1) * w2 `^ (q^-1) * y.
rewrite -!powRD pq1; [|exact/implyP..].
by rewrite !powRr1// /w2 ?onem_ge0.
apply: (@le_trans _ _ ((w1 * x `^ p + w2 * y `^ p) `^ (p^-1) *
(w1 + w2) `^ q^-1)).
pose a1 := w1 `^ p^-1 * x. pose a2 := w2 `^ p^-1 * y.
pose b1 := w1 `^ q^-1. pose b2 := w2 `^ q^-1.
have : a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 *
(b1 `^ q + b2 `^ q) `^ q^-1.
by apply: hoelder2 => //; rewrite ?mulr_ge0 ?powR_ge0.
rewrite ?powRM ?powR_ge0 -?powRrM ?mulVf ?powRr1 ?gt_eqF ?onem_ge0/w2//.
by rewrite mulrAC (mulrAC _ y) => /le_trans; exact.
by rewrite {2}/w1 {2}/w2 subrK powR1 mulr1.
Qed.
End convex_powR.
Section minkowski.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Implicit Types (f g : T -> R) (p : R).
Let convex_powR_abs_half f g p x : 1 <= p ->
`| 2^-1 * f x + 2^-1 * g x | `^ p <=
2^-1 * `| f x | `^ p + 2^-1 * `| g x | `^ p.
Proof.
move=> p1; rewrite (@le_trans _ _ ((2^-1 * `| f x | + 2^-1 * `| g x |) `^ p))//.
rewrite ge0_ler_powR ?nnegrE ?(le_trans _ p1)//.
by rewrite (le_trans (ler_normD _ _))// 2!normrM ger0_norm.
rewrite {1 3}(_ : 2^-1 = 1 - 2^-1); last by rewrite {2}(splitr 1) div1r addrK.
rewrite (@convex_powR _ _ p1 (@Itv.mk _ _ _ _)) ?inE/= ?in_itv/= ?normr_ge0//.
by rewrite /Itv.itv_cond/= in_itv/= invr_ge0 ler0n invf_le1 ?ler1n.
Qed.
Let measurableT_comp_powR f p :
measurable_fun setT f -> measurable_fun setT (fun x => f x `^ p)%R.
Proof. exact: (@measurableT_comp _ _ _ _ _ _ (@powR R ^~ p)). Qed.
Local Notation "'N_ p [ f ]" := (Lnorm mu p f).
Local Open Scope ereal_scope.
Let minkowski1 f g p : measurable_fun setT f -> measurable_fun setT g ->
'N_1[(f \+ g)%R] <= 'N_1[f] + 'N_1[g].
Proof.
move=> mf mg.
rewrite !Lnorm1 -ge0_integralD//; [|by do 2 apply: measurableT_comp..].
rewrite ge0_le_integral//.
- by do 2 apply: measurableT_comp => //; exact: measurable_funD.
- by move=> x _; rewrite lee_fin.
- by apply/measurableT_comp/measurable_funD; exact/measurableT_comp.
- by move=> x _; rewrite lee_fin ler_normD.
Qed.
Let minkowski_lty f g p :
measurable_fun setT f -> measurable_fun setT g -> (1 <= p)%R ->
'N_p%:E[f] < +oo -> 'N_p%:E[g] < +oo -> 'N_p%:E[(f \+ g)%R] < +oo.
Proof.
move=> mf mg p1 Nfoo Ngoo.
have p0 : p != 0%R by rewrite gt_eqF// (lt_le_trans _ p1).
have h x : (`| f x + g x | `^ p <=
2 `^ (p - 1) * (`| f x | `^ p + `| g x | `^ p))%R.
have := convex_powR_abs_half (fun x => 2 * f x)%R (fun x => 2 * g x)%R x p1.
rewrite !normrM (@ger0_norm _ 2)// !mulrA mulVf// !mul1r => /le_trans; apply.
rewrite !powRM// !mulrA -powR_inv1// -powRD ?pnatr_eq0 ?implybT//.
by rewrite (addrC _ p) -mulrDr.
rewrite unlock (gt_eqF (lt_le_trans _ p1))// poweR_lty//.
pose x := \int[mu]_x (2 `^ (p - 1) * (`|f x| `^ p + `|g x| `^ p))%:E.
apply: (@le_lt_trans _ _ x).
rewrite ge0_le_integral//=.
- by move=> t _; rewrite lee_fin// powR_ge0.
- apply/EFin_measurable_fun/measurableT_comp_powR/measurableT_comp => //.
exact: measurable_funD.
- by move=> t _; rewrite lee_fin mulr_ge0 ?addr_ge0 ?powR_ge0.
- by apply/EFin_measurable_fun/measurable_funM/measurable_funD => //;
exact/measurableT_comp_powR/measurableT_comp.
- by move=> ? _; rewrite lee_fin.
rewrite {}/x; under eq_integral do rewrite EFinM.
rewrite ge0_integralZl_EFin ?powR_ge0//; last 2 first.
- by move=> x _; rewrite lee_fin addr_ge0// powR_ge0.
- by apply/EFin_measurable_fun/measurable_funD => //;
exact/measurableT_comp_powR/measurableT_comp.
rewrite lte_mul_pinfty ?lee_fin ?powR_ge0//.
under eq_integral do rewrite EFinD.
rewrite ge0_integralD//; last 4 first.
- by move=> x _; rewrite lee_fin powR_ge0.
- exact/EFin_measurable_fun/measurableT_comp_powR/measurableT_comp.
- by move=> x _; rewrite lee_fin powR_ge0.
- exact/EFin_measurable_fun/measurableT_comp_powR/measurableT_comp.
by rewrite lte_add_pinfty// -powR_Lnorm ?(gt_eqF (lt_trans _ p1))// poweR_lty.
Qed.
Lemma minkowski f g p :
measurable_fun setT f -> measurable_fun setT g -> (1 <= p)%R ->
'N_p%:E[(f \+ g)%R] <= 'N_p%:E[f] + 'N_p%:E[g].
Proof.
move=> mf mg; rewrite le_eqVlt => /predU1P[<-|p1]; first exact: minkowski1.
have [->|Nfoo] := eqVneq 'N_p%:E[f] +oo.
by rewrite addye ?leey// -ltNye (lt_le_trans _ (Lnorm_ge0 _ _ _)).
have [->|Ngoo] := eqVneq 'N_p%:E[g] +oo.
by rewrite addey ?leey// -ltNye (lt_le_trans _ (Lnorm_ge0 _ _ _)).
have Nfgoo : 'N_p%:E[(f \+ g)%R] < +oo.
by rewrite minkowski_lty// ?ltW// ltey; [exact: Nfoo|exact: Ngoo].
suff : 'N_p%:E[(f \+ g)%R] `^ p <= ('N_p%:E[f] + 'N_p%:E[g]) *
'N_p%:E[(f \+ g)%R] `^ p * (fine 'N_p%:E[(f \+ g)%R])^-1%:E.
have [-> _|Nfg0] := eqVneq 'N_p%:E[(f \+ g)%R] 0.
by rewrite adde_ge0 ?Lnorm_ge0.
rewrite lee_pdivlMr ?fine_gt0// ?lt0e ?Nfg0 ?Lnorm_ge0//.
rewrite -{1}(@fineK _ ('N_p%:E[(f \+ g)%R] `^ p)); last first.
by rewrite fin_num_poweR// ge0_fin_numE// Lnorm_ge0.
rewrite -(invrK (fine _)) lee_pdivrMl; last first.
rewrite invr_gt0 fine_gt0// (poweR_lty _ Nfgoo) andbT poweR_gt0//.
by rewrite lt0e Nfg0 Lnorm_ge0.
rewrite fineK ?ge0_fin_numE ?Lnorm_ge0// => /le_trans; apply.
rewrite lee_pdivrMl; last first.
by rewrite fine_gt0// poweR_lty// andbT poweR_gt0// lt0e Nfg0 Lnorm_ge0.
by rewrite fineK// 1?muleC// fin_num_poweR// ge0_fin_numE ?Lnorm_ge0.
have p0 : (0 < p)%R by exact: (lt_trans _ p1).
rewrite powR_Lnorm ?gt_eqF//.
under eq_integral => x _ do rewrite -mulr_powRB1//.
apply: (@le_trans _ _
(\int[mu]_x ((`|f x| + `|g x|) * `|f x + g x| `^ (p - 1))%:E)).
rewrite ge0_le_integral//.
- by move=> ? _; rewrite lee_fin mulr_ge0// powR_ge0.
- apply: measurableT_comp => //; apply: measurable_funM.
exact/measurableT_comp/measurable_funD.
exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
- by move=> ? _; rewrite lee_fin mulr_ge0// powR_ge0.
- apply/measurableT_comp => //; apply: measurable_funM.
by apply/measurable_funD => //; exact: measurableT_comp.
exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
- by move=> ? _; rewrite lee_fin ler_wpM2r// ?powR_ge0// ler_normD.
under eq_integral=> ? _ do rewrite mulrDl EFinD.
rewrite ge0_integralD//; last 4 first.
- by move=> x _; rewrite lee_fin mulr_ge0// powR_ge0.
- apply: measurableT_comp => //; apply: measurable_funM.
exact: measurableT_comp.
exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
- by move=> x _; rewrite lee_fin mulr_ge0// powR_ge0.
- apply: measurableT_comp => //; apply: measurable_funM.
exact: measurableT_comp.
exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
rewrite [leRHS](_ : _ = ('N_p%:E[f] + 'N_p%:E[g]) *
(\int[mu]_x (`|f x + g x| `^ p)%:E) `^ `1-(p^-1)).
rewrite muleDl; last 2 first.
- rewrite fin_num_poweR// -powR_Lnorm ?gt_eqF// fin_num_poweR//.
by rewrite ge0_fin_numE ?Lnorm_ge0.
- by rewrite ge0_adde_def// inE Lnorm_ge0.
apply: leeD.
- pose h := (@powR R ^~ (p - 1) \o normr \o (f \+ g))%R; pose i := (f \* h)%R.
rewrite [leLHS](_ : _ = 'N_1[i]%R); last first.
rewrite Lnorm1; apply: eq_integral => x _.
by rewrite normrM (ger0_norm (powR_ge0 _ _)).
rewrite [X in _ * X](_ : _ = 'N_(p / (p - 1))%:E[h]); last first.
rewrite unlock mulf_eq0 gt_eqF//= invr_eq0 subr_eq0 (gt_eqF p1).
rewrite onemV ?gt_eqF// invf_div; apply: congr2; last by [].
apply: eq_integral => x _; congr EFin.
rewrite norm_powR// normr_id -powRrM mulrCA divff ?mulr1//.
by rewrite subr_eq0 gt_eqF.
apply: (@hoelder _ _ _ _ _ _ p (p / (p - 1))) => //.
+ exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
+ by rewrite divr_gt0// subr_gt0.
+ by rewrite invf_div -onemV ?gt_eqF// addrCA subrr addr0.
- pose h := (fun x => `|f x + g x| `^ (p - 1))%R; pose i := (g \* h)%R.
rewrite [leLHS](_ : _ = 'N_1[i]); last first.
rewrite Lnorm1; apply: eq_integral => x _ .
by rewrite normrM norm_powR// normr_id.
rewrite [X in _ * X](_ : _ = 'N_((1 - p^-1)^-1)%:E[h])//; last first.
rewrite unlock invrK invr_eq0 subr_eq0 eq_sym invr_eq1 (gt_eqF p1).
apply: congr2; last by [].
apply: eq_integral => x _; congr EFin.
rewrite -/(onem p^-1) onemV ?gt_eqF// norm_powR// normr_id -powRrM.
by rewrite invf_div mulrCA divff ?subr_eq0 ?gt_eqF// ?mulr1.
apply: (le_trans (@hoelder _ _ _ _ _ _ p (1 - p^-1)^-1 _ _ _ _ _)) => //.
+ exact/measurableT_comp_powR/measurableT_comp/measurable_funD.
+ by rewrite invr_gt0 onem_gt0// invf_lt1.
+ by rewrite invrK addrCA subrr addr0.
rewrite -muleA; congr (_ * _).
under [X in X * _]eq_integral=> x _ do rewrite mulr_powRB1 ?subr_gt0//.
rewrite poweRD; last by rewrite poweRD_defE gt_eqF ?implyFb// subr_gt0 invf_lt1.
rewrite poweRe1; last by apply: integral_ge0 => x _; rewrite lee_fin powR_ge0.
congr (_ * _); rewrite poweRN.
- by rewrite unlock gt_eqF// fine_poweR.
- by rewrite -powR_Lnorm ?gt_eqF// fin_num_poweR// ge0_fin_numE ?Lnorm_ge0.
Qed.
End minkowski.