- Train network
- Test network
- Inference on an image
- Inference on a video
- Inference on a camera movie
python train.py [Arguments]
[Arguments (all are optional)]
-
weights : pretrained weights used when transfer learning or fine tuning (default : None)
-
model : specify 'sep' if you use separable model (default : None)
-
data_root : path to dataset (train.txt must be placed, default : $HOME/datasets/COCO/2014)
-
num_classes : num of classification
-
class_names : path to file of class name (default : namefiles/coco.names)
-
output_model : file name of trained model (default : yolo-tiny.pt)
-
batchsize : batch size
-
lr : initial value of learning rate
-
epochs : training epochs
-
decay : weights decay
-
trans : transfer learning switch (default : False, set to True)
-
finetune : fine tuning switch (default : False, set to True)
-
novalid : don't do validation after every epoch (default : False, set to True)
-
nosave : don't save training result (default : False, set to True)
Run train.py like above. This training program saves the trained model into 'results/{date of end of training}/'. That directory includes model (*.pt), parameter list that have used in training (train_parameters.txt), learning rate transition (lr.png), mAP transition (mAP.png), and loss transition (loss.png).
python test.py [Arguments]
[Arguments (all are optional)]
- weights : trained model (default : weights/yolov3-tiny.pt)
- model : specify 'sep' if you use separable model (default : None)
- data_root : path to dataset (test.txt must be placed, default : $HOME/datasets/COCO/2014)
- num_classes : num of classification
- class_names : path to file of class name (default : namefiles/coco.names)
- quant : quantization switch (default : False, set to True)
- nogpu : specify if you don't want to use GPU (default : False, set to True)
python detect.py [Arguments]
[Arguments (all are optional)]
-
weights : trained model (default : weights/yolov3-tiny.pt)
-
model : specify 'sep' if you use separable model (default : None)
-
image : path to an image for inference (default : images/car.jpg)
-
output_image : output file name of inference result (default : output.jpg)
-
num_classes : num of classification
-
class_names : path to file of class name (default : namefiles/car.names)
-
quant : quantization switch (default : False, set to True)
-
nogpu : specify if you don't want to use GPU (default : False, set to True)
-
conf_thres : confidence threshold for NMS
-
nms_thres : nms threshold for NMS (IoU threshold)
- The directory 'tools/' is under development.
- Some codes are based on eriklindernoren/PyTorch-YOLOv3