-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathphaseaug.py
121 lines (114 loc) · 4.45 KB
/
phaseaug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn as nn
from math import pi, sqrt
from alias_free_torch.filter import LowPassFilter1d as LPF
class PhaseAug(nn.Module):
def __init__(
self,
nfft=1024,
hop=256,
use_filter=True,
var=6.0,
delta_max=2.0,
cutoff=0.05,
half_width=0.012,
kernel_size=128,
filter_padding='constant',
complex_calc=None
):
super().__init__()
self.nfft = nfft
self.hop = hop
self.var = var
self.delta_max = delta_max
self.use_filter = use_filter
self.complex_calc = complex_calc
self.register_buffer('window', torch.hann_window(nfft))
self.register_buffer('phi_ref', torch.arange(nfft // 2 + 1).unsqueeze(0) * 2 * pi / nfft)
if use_filter:
self.lpf = LPF(cutoff, half_width, kernel_size=kernel_size, padding_mode=filter_padding)
def sample_phi(self, batch_size):
mu = self.lpf(
sqrt(self.var) *
torch.randn([batch_size, 1, self.nfft // 2 + 1], device=self.phi_ref.device) +
self.delta_max * (2. * torch.rand([batch_size, 1, 1], device=self.phi_ref.device) - 1.)
).squeeze(1)
phi = mu * self.phi_ref
return phi #[B,nfft//2+1]
else:
def sample_phi(self, batch_size):
mu = (
sqrt(self.var) *
torch.randn([batch_size, self.nfft // 2 + 1], device=self.phi_ref.device) +
self.delta_max * (2. * torch.rand([batch_size, 1], device=self.phi_ref.device) - 1.)
)
phi = mu * self.phi_ref
return phi #[B,nfft//2+1]
self.sample_phi = sample_phi
if complex_calc or int(torch.__version__[0])>=2:
def stft_rot_istft(self, x, phi):
X = torch.stft(
x,
self.nfft,
self.hop,
window=self.window,
return_complex=True
) #[B,F,T]
rot = torch.exp(torch.tensor([(0.+1.j)], dtype = torch.complex64, device = x.device) * phi) #[B,F,1]
X_aug = X * rot
x_aug = torch.istft(
X_aug,
self.nfft,
self.hop,
window=self.window,
return_complex=False
).unsqueeze(1)
return x_aug
else:
def stft_rot_istft(self, x, phi):
X = torch.stft(
x,
self.nfft,
self.hop,
window=self.window,
return_complex=False
) #[B,F,T,2]
phi_cos = phi.cos()
phi_sin = phi.sin()
rot_mat = torch.cat(
[phi_cos, -phi_sin, phi_sin, phi_cos], #[B,F,2,2]
dim=-1).view(-1, self.nfft // 2 + 1, 2, 2)
# We did not mention that we multiplied rot_mat to "the left side of X"
# Paper will be modified at rebuttal phase for clarity.
X_aug = torch.einsum('bfij ,bftj->bfti', rot_mat, X)
x_aug = torch.istft(
X_aug,
self.nfft,
self.hop,
window=self.window,
return_complex=False
).unsqueeze(1)
return x_aug
self.stft_rot_istft = stft_rot_istft
# x: audio [B,1,T] -> [B,1,T]
# phi: [B,nfft//2+1]
# also possible for x :[B,C,T] but we did not generalize it.
def forward(self, x, phi=None):
B = x.shape[0]
x = x.squeeze(1) #[B,t]
if phi is None:
phi = self.sample_phi(self, B)
phi[:, 0] = 0. # we are multiplying phi_ref to mu, so it is always zero in our scheme
phi = phi.unsqueeze(-1) #[B,F,1]
x_aug = self.stft_rot_istft(self, x, phi)
return x_aug #[B,1,t]
# x: audio [B,1,T] -> [B,1,T]
# phi: [B,nfft//2+1]
def forward_sync(self, x, x_hat, phi=None):
B = x.shape[0]
x = torch.cat([x, x_hat], dim=0) #[2B,1,t]
if phi is None:
phi = self.sample_phi(self, B) #[2B, nfft//2+1]
phi = torch.cat([phi, phi], dim=0)
x_augs = self.forward(x, phi).split(B, dim=0)
return x_augs