Skip to content

This is a PyTorch implementation of Kaggle's Cassava Disease Visual Classification challenge (5th place in private leaderboard)

Notifications You must be signed in to change notification settings

melihbaydar/fine_grained.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual classification on cassava disease dataset of Kaggle

This is the implementation of Cassava Disease Fine-Grained Visual Classification Challenge, 5th place entry on Kaggle https://www.kaggle.com/c/cassava-disease

Networks used in this repository are PyTorch official implementations or from https://github.com/Cadene/pretrained-models.pytorch, with small alterations.

Requires pytorch >= v1.0.0

Download cassava disease dataset from https://www.kaggle.com/c/cassava-disease/data and put it into the root directory ${ROOT}

Your directory tree should look like this:

${ROOT}
├── cassava
| ├── train
| | ├── cbb
| | ├── cbsd
| | ├── cgm
| | ├── cmd
| | ├── healthy
| ├── test
| | ├── 0
| ├── extraimages
| | ├── 0
├── dataloaders
├── networks
├── utils
├── config.py
├── main.py
└── README.md

Training and Testing

Train your model with inception v4 network using input image resolution 560, batch size 16 with:

python main.py --arch inceptionv4 --model_input_size 560 --batch_size 16

---o---

If you want to resume training from a checkpoint, you can use:

python main.py --arch inceptionv4 --model_input_size 560 --batch_size 16 --resume_path <path_to_pth_file>

---o---

Test your trained model from a checkpoint file using:

python main.py --arch inceptionv4 --model_input_size 560 --batch_size 16 --train False --test true --resume_path <path_to_pth_file>

---o---

Use validation by splitting training data using:

python main.py --arch inceptionv4 --model_input_size 560 --batch_size 16 --validate true --train_percentage 0.8

---o---

About

This is a PyTorch implementation of Kaggle's Cassava Disease Visual Classification challenge (5th place in private leaderboard)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages