-
Notifications
You must be signed in to change notification settings - Fork 29
Description
Now I got again a situation in which ~idi was added to a proof during minimization:
Theorem with original proof:
$( The closed (internal binary) operations for a set. (Contributed by AV,
20-Jan-2020.) $)
clintopval $p |- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) $=
( vm wcel cclintop cfv cxp cmap co cv cintop cvv cmpt wceq df-clintop a1i
wa id oveq12d eqtrd adantl jca intopval syl adantr elex ovex fvmptd eqidd
) ABDZAEFAAAGZHIZULUJCACJZUMKIZULLELECLUNMNUJCOPUJUMANZQUNAAKIZULUOUNUPNU
JUOUMAUMAKUORZUQSUAUJUPULNZUOUJUJUJQURUJUJUJUJRZUSUBAABBUCUDUETABUFULLDUJ
AUKHUGPUHUJULUIT $.
1 df-clintop $a |- clIntOp = ( m e. _V |-> ( m intOp m ) )
2 1 a1i $p |- ( M e. V -> clIntOp = ( m e. _V |-> ( m intOp m ) ) )
3 id $p |- ( m = M -> m = M )
4 id $p |- ( m = M -> m = M )
5 3,4 oveq12d $p |- ( m = M -> ( m intOp m ) = ( M intOp M ) )
6 5 adantl $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M intOp M ) )
7 id $p |- ( M e. V -> M e. V )
8 id $p |- ( M e. V -> M e. V )
9 7,8 jca $p |- ( M e. V -> ( M e. V /\ M e. V ) )
10 intopval $p |- ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X.
M ) ) )
11 9,10 syl $p |- ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) )
12 11 adantr $p |- ( ( M e. V /\ m = M ) -> ( M intOp M ) = ( M ^m ( M X. M
) ) )
13 6,12 eqtrd $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X. M
) ) )
14 elex $p |- ( M e. V -> M e. _V )
15 ovex $p |- ( M ^m ( M X. M ) ) e. _V
16 15 a1i $p |- ( M e. V -> ( M ^m ( M X. M ) ) e. _V )
17 2,13,14,16 fvmptd $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) ) 18 eqidd $p |- ( M e. V -> ( M ^m ( M X. M ) ) = ( M ^m ( M X. M ) ) ) 19 17,18 eqtrd $p |- ( M e. V -> ( clIntOp
M ) = ( M ^m ( M X. M ) ) )
Proof after min *:
( vm wcel cclintop cfv cxp cmap co wceq wi cintop cvv cmpt df-clintop a1i
cv id oveq12d intopval anidms sylan9eqr elex ovex fvmptd idi ) ABDZAEFAAA
GZHIZJKUGCACQZUJLIZUIMEMECMUKNJUGCOPUJAJZUGUKAALIZUIULUJAUJALULRZUNSUGUMU
IJAABBTUAUBABUCUIMDUGAUHHUDPUEUF $.
1 df-clintop $a |- clIntOp = ( m e. _V |-> ( m intOp m ) )
2 1 a1i $p |- ( M e. V -> clIntOp = ( m e. _V |-> ( m intOp m ) ) )
3 id $p |- ( m = M -> m = M )
4 id $p |- ( m = M -> m = M )
5 3,4 oveq12d $p |- ( m = M -> ( m intOp m ) = ( M intOp M ) )
6 intopval $p |- ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X.
M ) ) )
7 6 anidms $p |- ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) )
8 5,7 sylan9eqr $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X.
M ) ) )
9 elex $p |- ( M e. V -> M e. _V )
10 ovex $p |- ( M ^m ( M X. M ) ) e. _V
11 10 a1i $p |- ( M e. V -> ( M ^m ( M X. M ) ) e. _V )
12 2,8,9,11 fvmptd $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) ) 13 12 idi $p |- ( M e. V -> ( clIntOp
M ) = ( M ^m ( M X. M ) ) )
Running min * again didn't help, I had to remove the line 13 by hand. No discouraged theorems were used.
@nmegill could you have a look at it, please? If you need the whole context of the theorem, please wait for my next PR. I used Metamath - Version 0.180 10-Dec-2019.