Skip to content

idi not removed on minimization #78

@avekens

Description

@avekens

Now I got again a situation in which ~idi was added to a proof during minimization:

Theorem with original proof:

$( The closed (internal binary) operations for a set.  (Contributed by AV,
   20-Jan-2020.) $)
clintopval $p |- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) $=
  ( vm wcel cclintop cfv cxp cmap co cv cintop cvv cmpt wceq df-clintop a1i
  wa id oveq12d eqtrd adantl jca intopval syl adantr elex ovex fvmptd eqidd
  ) ABDZAEFAAAGZHIZULUJCACJZUMKIZULLELECLUNMNUJCOPUJUMANZQUNAAKIZULUOUNUPNU
  JUOUMAUMAKUORZUQSUAUJUPULNZUOUJUJUJQURUJUJUJUJRZUSUBAABBUCUDUETABUFULLDUJ
  AUKHUGPUHUJULUIT $.

1 df-clintop $a |- clIntOp = ( m e. _V |-> ( m intOp m ) )
2 1 a1i $p |- ( M e. V -> clIntOp = ( m e. _V |-> ( m intOp m ) ) )
3 id $p |- ( m = M -> m = M )
4 id $p |- ( m = M -> m = M )
5 3,4 oveq12d $p |- ( m = M -> ( m intOp m ) = ( M intOp M ) )
6 5 adantl $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M intOp M ) )
7 id $p |- ( M e. V -> M e. V )
8 id $p |- ( M e. V -> M e. V )
9 7,8 jca $p |- ( M e. V -> ( M e. V /\ M e. V ) )
10 intopval $p |- ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X.
M ) ) )
11 9,10 syl $p |- ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) )
12 11 adantr $p |- ( ( M e. V /\ m = M ) -> ( M intOp M ) = ( M ^m ( M X. M
) ) )
13 6,12 eqtrd $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X. M
) ) )
14 elex $p |- ( M e. V -> M e. _V )
15 ovex $p |- ( M ^m ( M X. M ) ) e. _V
16 15 a1i $p |- ( M e. V -> ( M ^m ( M X. M ) ) e. _V )
17 2,13,14,16 fvmptd $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) ) 18 eqidd $p |- ( M e. V -> ( M ^m ( M X. M ) ) = ( M ^m ( M X. M ) ) ) 19 17,18 eqtrd $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) )

Proof after min *:

  ( vm wcel cclintop cfv cxp cmap co wceq wi cintop cvv cmpt df-clintop a1i
  cv id oveq12d intopval anidms sylan9eqr elex ovex fvmptd idi ) ABDZAEFAAA
  GZHIZJKUGCACQZUJLIZUIMEMECMUKNJUGCOPUJAJZUGUKAALIZUIULUJAUJALULRZUNSUGUMU
  IJAABBTUAUBABUCUIMDUGAUHHUDPUEUF $.

1 df-clintop $a |- clIntOp = ( m e. _V |-> ( m intOp m ) )
2 1 a1i $p |- ( M e. V -> clIntOp = ( m e. _V |-> ( m intOp m ) ) )
3 id $p |- ( m = M -> m = M )
4 id $p |- ( m = M -> m = M )
5 3,4 oveq12d $p |- ( m = M -> ( m intOp m ) = ( M intOp M ) )
6 intopval $p |- ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X.
M ) ) )
7 6 anidms $p |- ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) )
8 5,7 sylan9eqr $p |- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X.
M ) ) )
9 elex $p |- ( M e. V -> M e. _V )
10 ovex $p |- ( M ^m ( M X. M ) ) e. _V
11 10 a1i $p |- ( M e. V -> ( M ^m ( M X. M ) ) e. _V )
12 2,8,9,11 fvmptd $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) ) 13 12 idi $p |- ( M e. V -> ( clIntOp M ) = ( M ^m ( M X. M ) ) )

Running min * again didn't help, I had to remove the line 13 by hand. No discouraged theorems were used.

@nmegill could you have a look at it, please? If you need the whole context of the theorem, please wait for my next PR. I used Metamath - Version 0.180 10-Dec-2019.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions