Skip to content

CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis

License

Notifications You must be signed in to change notification settings

mfrashad/creativegan

Repository files navigation

CreativeGAN

Experiment code associated with the paper CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis

Logo

Paper · Project Page · Colab Notebook

Setup

Run the setup script to setup the conda environment.

./setup/setup_renv.sh

Download the the pretrained models and dataset using the download script.

./download.sh

The script will download a stylegan and segmentation model. It will also download the bike dataset used alongside a small test dataset that you can use try first to make sure the code is working (using the complete dataset may require high memory for the anomaly detection).

Usage

Run the following python script.

python creativegan.py --name <name of experiment> \
                       --model_path <stylegan model path> \
                       --seg_model_path <segmentation model path> \
                       --seg_channels <segmentation channels to be considered in anomaly detection>\
                       --data_path '<dataset path>' \
                       --copy_id <seed id of target copy> \
                       --paste_id <seed id of target paste> \
                       --context_ids <seed ids of contexts (comma separated or range)> \
                       --layernum <layer to be edited>

Exampe usage:

python creativegan.py --name "bike" \
                       --model_path "./models/stylegan2_bike.pt" \
                       --seg_model_path './models/segmentation_bike.pt' \
                       --seg_channels 0,3 \
                       --data_path './datasets/test_data' \
                       --copy_id 907 \
                       --paste_id 7 \
                       --context_ids 7-12 \
                       --layernum 6

For more optional arguments, refer to help command.

python creativegan.py --help

Experiment

Run the experiment script.

./experiment.sh

The output will be in rewriting_result folder.

Result

Experiment Result Result 1 Result 2


Quantitative Result

Result 3

License

This code is licensed under the MIT license. Feel free to use all or portions for your research or related projects so long as you provide the following citation information:

@misc{nobari2021creativegan,
  title={CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis}, 
  author={Amin Heyrani Nobari and Muhammad Fathy Rashad and Faez Ahmed},
  year={2021},
  eprint={2103.06242},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}

Part of the code is adapted from David Bau's repository.

About

CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published