Official implementation of FSDDIM
arxiv: https://arxiv.org/abs/2312.01742
-
Install requirements
pip install -r requirements.txt
-
Login to Weights & Biases
Please follow the official instruction of Weights & Biases for more details.
wandb login
-
Initialize fid stats
python calc_clean_fid_stats.py -c <config_file> -d 0 -o <output_directory>
- args
-c
,--config
- Path to the config file.
- Sample config files can be found in
configs/
.
-d
,--gpu-id
- GPU id.
-o
,--output-dir
- Directory in which dataset images will be saved.
- args
We use Hugging Face Accelerate. Please follow the official instruction of Accelerate for more details.
accelerate launch --multi_gpu --num_processes=4 --gpu_ids=0,1,2,3 --mixed_precision fp16 main.py -c <config_file> -n <experiment_name>
- args
-c
,--config
- Path to the config file.
- Sample config files can be found in
configs/
.
-n
,--name
- Experiment name.
- Please specify a unique name because generated images will be saved in
output/<experiment_name>
.
The scores of evaluation metrics are approximately as follows.
Dataset | Time steps | Fréchet Inception Distance (FID) | Fréchet Autoencoder Distance (FAD) |
---|---|---|---|
MNIST | 8 | 3.99 | 5.71 |
MNIST | 4 | 7.48 | 3.62 |
Fashion MNIST | 8 | 11.78 | 4.91 |
Fashion MNIST | 4 | 9.17 | 9.25 |
CIFAR-10 | 8 | 46.14 | 12.61 |
CIFAR-10 | 4 | 51.46 | 8.63 |
CelebA | 4 | 36.08 | 66.52 |
Please cite our paper if you use this code in your own work:
@article{FSDDIM,
title={Fully Spiking Denoising Diffusion Implicit Models},
author={Watanabe, Ryo and Mukuta, Yusuke and Harada, Tatsuya},
journal={arXiv preprint arXiv:2312.01742},
year={2023}
}