Skip to content

Commit faca863

Browse files
authored
Update model_training.py
1 parent 63adf6a commit faca863

File tree

1 file changed

+5
-8
lines changed

1 file changed

+5
-8
lines changed

Malaria/model_training.py

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -16,23 +16,23 @@
1616
data = []
1717
labels = []
1818

19-
Parasitized = os.listdir("../input/cell-images-for-detecting-malaria/cell_images/Parasitized/")
19+
Parasitized = os.listdir("../input/malaria/cell_images/Parasitized/")
2020

2121
for a in Parasitized:
2222
try:
23-
imageP = cv2.imread("../input/cell-images-for-detecting-malaria/cell_images/Parasitized/" + a)
23+
imageP = cv2.imread("../input/malaria/cell_images/Parasitized/" + a)
2424
image_from_arrayP = Image.fromarray(imageP, 'RGB')
2525
size_imageP = image_from_arrayP.resize((36, 36))
2626
data.append(np.array(size_imageP))
2727
labels.append(0)
2828
except AttributeError:
2929
print("")
3030

31-
Uninfected = os.listdir("../input/cell-images-for-detecting-malaria/cell_images/Uninfected/")
31+
Uninfected = os.listdir("../input/malaria/cell_images/Uninfected/")
3232

3333
for b in Uninfected:
3434
try:
35-
imageU = cv2.imread("../input/cell-images-for-detecting-malaria/cell_images/Uninfected/" + b)
35+
imageU = cv2.imread("../input/malaria/cell_images/Uninfected/" + b)
3636
image_from_arrayU = Image.fromarray(imageU, 'RGB')
3737
size_imageU = image_from_arrayU.resize((36, 36))
3838
data.append(np.array(size_imageU))
@@ -54,8 +54,7 @@
5454
# Splitting the dataset into the Training set and Test set
5555
X_train, X_valid, y_train, y_valid = train_test_split(data2, labels2, test_size=0.2, random_state=0)
5656
X_trainF = X_train.astype('float32')
57-
X_validF = X_valid.astype('float32')
58-
# One Hot Encoding
57+
X_validF = X_valid.astype('float32')
5958
y_trainF = to_categorical(y_train)
6059
y_validF = to_categorical(y_valid)
6160

@@ -78,9 +77,7 @@
7877
history = classifier.fit(X_trainF, y_trainF, batch_size=120, epochs=15, verbose=1, validation_data=(X_validF, y_validF))
7978
classifier.summary()
8079

81-
8280
y_pred = classifier.predict(X_validF)
83-
# Convert back to categorical values
8481
y_predF = np.argmax(y_pred, axis=1)
8582
y_valid_one = np.argmax(y_validF, axis=1)
8683
classifier.save("./Malaria/Models/malaria.h5")

0 commit comments

Comments
 (0)