Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fcenet readme update #495

Merged
merged 8 commits into from
Jul 24, 2023
Merged

Fcenet readme update #495

merged 8 commits into from
Jul 24, 2023

Conversation

colawyee
Copy link
Contributor

Thank you for your contribution to the MindOCR repo.
Before submitting this PR, please make sure:

Motivation

(Write your motivation for proposed changes here.)

Test Plan

(How should this PR be tested? Do you require special setup to run the test or repro the fixed bug?)

Related Issues and PRs

(Is this PR part of a group of changes? Link the other relevant PRs and Issues here. Use https://help.github.com/en/articles/closing-issues-using-keywords for help on GitHub syntax)

@@ -51,7 +51,7 @@ The FCENet in MindOCR is trained on ICDAR 2015 dataset. The training results are

| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T.** | **Throughput** | **Recipe** | **Download** |
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 95.59 s/epoch | 2.59 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 95.59 s/epoch | 2.59 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 95.59 s/epoch | 10.38 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |

日志中显示的是单卡fps,此处填写多(四)卡fps,约等于单卡fps *4

@@ -51,7 +51,7 @@ The FCENet in MindOCR is trained on ICDAR 2015 dataset. The training results are

| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T.** | **Throughput** | **Recipe** | **Download** |
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 95.59 s/epoch | 2.59 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

补充一列ms/step,可从日志中的per step time获取,多个epoch取个均值

@HaoyangLee
Copy link
Collaborator

HaoyangLee commented Jul 11, 2023

# Conflicts:
#	configs/det/fcenet/README.md
#	configs/det/fcenet/README_CN.md

update fcenet readme
Copy link
Collaborator

@SamitHuang SamitHuang left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nice work.

@SamitHuang
Copy link
Collaborator

It would be better to combine with #468

@colawyee colawyee merged commit 69a1192 into mindspore-lab:main Jul 24, 2023
@colawyee colawyee deleted the fcenet_readme branch July 24, 2023 07:59
@colawyee
Copy link
Contributor Author

update log data

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants