This Python 2.7/Python 3.x package provides the ability to dispatch on values
(as opposed to dispatching on types) by pairing functions with patterns. It
uses pattern matching to dispatch on complex, nested data structures containing
lists, dictionaries and primitive types. You can use lambda
to do
expression matching and utilise wildcard parameters to ensure identical values
can be matched (see any_a
). It can alleviate complicated and difficult to
read if ... elif ... elif ...
chains and simplify the code.
Value patterns can be registered dynamically, allowing a great flexibility in determining which functions are called on which value patterns.
The home page is on github at:
https://github.com/minimind/dispatch-on-value-for-python
Install using pip:
pip install dispatchonvalue
Unit tests can be run using:
python -m unittest discover
Any queries and comments are welcome. Send them to:
First register your dispatch methods, alongside the pattern they should match on:
import dispatchonvalue as dv dispatch_on_value = dv.DispatchOnValue() # Register your overloaded functions: @dispatch_on_value.add([1, 2, 3]) # [1, 2, 3] is the pattern to match on def _(a): assert a == [1, 2, 3] # return optional value return 3 @dispatch_on_value.add([4, 5, 6]) # [4, 5, 6] is the pattern to match on def _(a): assert a == [4, 5, 6] # return optional value return 4
Then else where in your code, dispatch to the correct function based on the value of the parameter passed:
p = [4, 5, 6] r = dispatch_on_value.dispatch(p) # Will call second function above
If no pattern was matched, and hence no function dispatched, the DispatchFailed class will be raised:
try: p = [7, 8, 9] r = dispatch_on_value.dispatch(p) except dv.DispatchFailed: print 'could not dispatch!'
The simplest use is to dispatch on fixed values. Here we dispatch to two
different functions fn_1
and fn_2
depending upon the value of p
:
@dispatch_on_value.add([1, 2, 3]) def fn_1(a): assert a == [1, 2, 3] # Do something @dispatch_on_value.add([4, 5, 6]) def fn_2(a): assert a == [4, 5, 6] # Do something p = [1, 2, 3] dispatch_on_value.dispatch(p) # This will call fn_1 and return True p = [4, 5, 6] dispatch_on_value.dispatch(p) # This will call fn_2 and return True p = [1, 2, 6] dispatch_on_value.dispatch(p) # This will not call anything and return False
The patterns can be as complex and as nested as you like:
@dispatch_on_value.add({'one': 3, 'animals': ['frog', 'mouse', 34]})
Use lambda
's as part of the pattern matching:
@dispatch_on_value.add([1, 2, lambda x: 3 < x < 7, 'hello']) def _(a): # Do something dispatch_on_value.dispatch([1, 2, 4, 'hello']) # This will match dispatch_on_value.dispatch([1, 2, 2, 'hello']) # This will not match
Another example:
@dispatch_on_value.add(['a', 2, lambda x: x == 'b' or x == 'c']) def _(a): # Do something dispatch_on_value.dispatch(['a', 2, 'c']) # This will match dispatch_on_value.dispatch(['a', 2, 's']) # This will not match
Use of wildcard tokens any_a
, any_b
, ... any_z
can ensure values are
identical. e.g.:
@dispatch_on_value.add([dv.any_a, 'b', 3, [3, 'd', dv.any_a]]) def _(a): # Do something dispatch_on_value.dispatch(['c', 'b', 3, [3, 'd', 'c']]) # This will match dispatch_on_value.dispatch(['f', 'b', 3, [3, 'd', 'f']]) # This will match dispatch_on_value.dispatch(['c', 'b', 3, [3, 'd', 'f']]) # This will not match
Use the all_same
token to see if all the items in a list match, e.g.:
@dispatch_on_value.add(['a', dv.all_same(4)]) def _(a): # Do something # This will match as the nested list contains all fours dispatch_on_value.dispatch(['a', [4,4,4,4,4,4,4]])
You can combine them with the any_X
token:
@dispatch_on_value.add(['a', dv.all_same(dv.any_a)]) def _(a): # Do something # These will match as the nested list contains all the same values dispatch_on_value.dispatch(['a', [4,4,4,4,4,4,4]]) dispatch_on_value.dispatch(['a', [5,5,5]]) # This won't match dispatch_on_value.dispatch(['a', [1,2,3]])
These examples are simplistic but a more complex example might be:
@dispatch_on_value.add(dv.all_same({'age': 32})) def _(a): # Do something # This would match since all the items in the list have the same age dispatch_on_value.dispatch([{'name': 'john', 'age': 32}, {'hair': 'brown', 'age': 32, 'car': 'lada'}]) # This wouldn't match since the ages are different dispatch_on_value.dispatch([{'name': 'john', 'age': 32}, {'name': 'john', 'age': 9}])
Another example:
# Match on a list of dictionaries where the name is 'john' and the # age is between 30 and 40 @dispatch_on_value.add(dv.all_same({'name': 'john', 'age': lamba x: 30 < x < 40}) def _(a): # Do something # This would match dispatch_on_value.dispatch([{'name': 'john', 'age': 32}, {'name': 'john', 'age': 37}]) # This would not match dispatch_on_value.dispatch([{'name': 'john', 'age': 32}, {'name': 'john', 'age': 45}])
Pass as many extra parameters as you want when dispatching:
@dispatch_on_value.add([1, 2]) def _(a, my_abc, my_def): assert a == [1, 2] # Do something dispatch_on_value.dispatch([1, 2], 'abc', 'def')
You can also pass keyword parameters:
@dispatch_on_value.add([3, 4]) def _(a, my_abc, **kwargs): assert 'para1' in kwargs # Do something dispatch_on_value.dispatch([3, 4], 'abc', para1=3)
You can dispatch methods on class instances using the add_method decorator:
dispatch_on_value = dv.DispatchOnValue() class MyClass(object): @dispatch_on_value.add_method([1, 2, 3]) def m1(self, a): called[0] = 1 return 2 @dispatch_on_value.add_method([4, 5, 6]) def m2(self, a): called[0] = 2 return 3 my_class = MyClass() called = [0] p = [4, 5, 6] # This will match m2... dispatch_on_value.dispatch(p) == 3
Matching on directories is partial by default. This means dictionaries will match if the key/value pairs in the pattern are matched - any extra pairs in the value passed will be ignored. For example:
@dispatch_on_value.add({'name': 'john', 'age': 32}) def _(a): # Do something # These will match because they contain the minimal dictionary items dispatch_on_value.dispatch({'name': 'john', 'age': 32}) dispatch_on_value.dispatch({'name': 'john', 'age': 32, 'sex': 'male'})
You can ensure dictionaries have to be exactly the same when matched by using
dispatch_strict()
rather than dispatch()
. For example:
# This will match because it's strict and the pattern is exactly the same dispatch_on_value.dispatch_strict({'name': 'john', 'age': 32}) # This will not match because the dictionary doesn't match exactly dispatch_on_value.dispatch_strict({'name': 'john', 'age': 32, 'sex': 'male'})
Author: minimind.