This is the PyTorch implement of MobileNet V2
Branch: master
Clone or download
hzweikaifeng
hzweikaifeng update train.py
Latest commit e43c9b9 Jan 30, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
ImageNet/ILSVRC2012_devkit_t12/data
MobileNetV2.py original commit Jan 23, 2018
README.md update readme Jan 26, 2018
read_ImageNetData.py fix validation dataset label Jan 26, 2018
train.py update train.py Jan 30, 2018

README.md

This is the PyTorch implement of MobileNet V2 (train on ImageNet dataset)

Paper: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segment

Usage

Prepare data

This code takes ImageNet dataset as example. You can download ImageNet dataset and put them as follows. I only provide ILSVRC2012_dev_kit_t12 due to the restriction of memory, in other words, you need download ILSVRC2012_img_train and ILSVRC2012_img_val.

├── train.py # train script
├── MobileNetV2.py # network of MobileNetV2
├── read_ImageNetData.py # ImageNet dataset read script
├── ImageData # train and validation data
	├── ILSVRC2012_img_train
		├── n01440764
		├──    ...
		├── n15075141
	├── ILSVRC2012_img_val
	├── ILSVRC2012_dev_kit_t12
		├── data
			├── ILSVRC2012_validation_ground_truth.txt
			├── meta.mat # the map between train file name and label

Train

  • If you want to train from scratch, you can run as follows:
python train.py --batch-size 256 --gpus 0,1,2,3
  • If you want to train from one checkpoint, you can run as follows(for example train from epoch_4.pth.tar, the --start-epoch parameter is corresponding to the epoch of the checkpoint):
python train.py --batch-size 256 --gpus 0,1,2,3 --resume output/epoch_4.pth.tar --start-epoch 4