JAX library for MARL research
This work was funded at IIIT-H, Hyderabad, India
- Independent-IMPALA for multi-agent environments
- OPRE
- Distributed training (IMPALA style architecture)
- Dynamically distribute load of multiple agents across available GPUs
- Run multiple environment instances, one per CPU core for experience collection
- Wandb and Tensorboard logging
- PopArt normalization
IMPALA | OPRE | |
---|---|---|
Substrate | 65.944444 | 67.833333 |
Scenario 0 | 0.888889 | 0.333333 |
Scenario 1 | 109.111111 | 126.000000 |
Scenario 2 | 0.222222 | 0.000000 |
Scenario 3 | 154.555556 | 171.333333 |
IMPALA | OPRE | |
---|---|---|
Substrate | 106.849834 | 38.178917 |
Scenario 0 | 131.002046 | 59.706502 |
Scenario 1 | 176.537759 | 114.685576 |
Scenario 2 | 79.583174 | 27.968283 |
Scenario 3 | 62.804043 | 41.763728 |
Scenario 4 | 48.626646 | 38.745093 |
Scenario 5 | 65.819378 | 47.660647 |
Scenario 6 | 101.830552 | 40.335949 |
Scenario 7 | 83.325145 | 49.824935 |
Scenario 8 | 77.751732 | 32.586948 |
Scenario 9 | 78.408784 | 74.622007 |
If you use this code in your project, please cite the following paper:
@article{mehta2023marljax,
title={marl-jax: Multi-agent Reinforcement Leaning framework for Social Generalization},
author={Kinal Mehta and Anuj Mahajan and Pawan Kumar},
year={2023},
journal={arXiv preprint arXiv:2303.13808},
url={https://arxiv.org/abs/2303.13808},
}