Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix link to 4-bit quantization blog post, change order of references … #59

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -257,8 +257,8 @@ Quantization is the process of converting the weights (and activations) of a mod

📚 **References**:
* [Introduction to quantization](https://mlabonne.github.io/blog/posts/Introduction_to_Weight_Quantization.html): Overview of quantization, absmax and zero-point quantization, and LLM.int8() with code.
* [4-bit LLM Quantization with GPTQ](https://mlabonne.github.io/blog/posts/4_bit_Quantization_with_GPTQ.html): Tutorial on how to quantize an LLM using the GPTQ algorithm with AutoGPTQ.
* [Quantize Llama models with llama.cpp](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html): Tutorial on how to quantize a Llama 2 model using llama.cpp and the GGUF format.
* [4-bit LLM Quantization with GPTQ](https://mlabonne.github.io/blog/posts/Introduction_to_Weight_Quantization.html): Tutorial on how to quantize an LLM using the GPTQ algorithm with AutoGPTQ.
* [ExLlamaV2: The Fastest Library to Run LLMs](https://mlabonne.github.io/blog/posts/ExLlamaV2_The_Fastest_Library_to_Run%C2%A0LLMs.html): Guide on how to quantize a Mistral model using the EXL2 format and run it with the ExLlamaV2 library.
* [Understanding Activation-Aware Weight Quantization](https://medium.com/friendliai/understanding-activation-aware-weight-quantization-awq-boosting-inference-serving-efficiency-in-10bb0faf63a8) by FriendliAI: Overview of the AWQ technique and its benefits.

Expand Down