Max-Heinrich Laves, Sontje Ihler, Lüder A. Kahrs, Tobias Ortmaier
Code for our abstract paper accepted at 33rd international conference on Computer Assisted Radiology and Surgery (CARS) 2019.
Paper link: https://arxiv.org/pdf/1904.00790.pdf
This paper describes a method based on variational autoencoder regularization that improves OCT retinal disease classification performance when using a limited amount of labeled data.
Figure 1: t-SNE projection of the latent space.
@inproceedings{Laves2019CARS,
author = {Max-Heinrich Laves and Sontje Ihler and L{\"u}der A. Kahrs and Tobias Ortmaier},
title = {Retinal OCT disease classification with variational autoencoder regularization},
booktitle={arXiv},
note = {https://arxiv.org/abs/1904.00790},
year = {2019}
}
Max-Heinrich Laves
laves@imes.uni-hannover.de
@MaxLaves
Institute of Mechatronic Systems
Leibniz Universität Hannover
An der Universität 1, 30823 Garbsen, Germany