Skip to content

Code for CARS 2019 paper "Retinal OCT disease classification with variational autoencoder regularization".

Notifications You must be signed in to change notification settings

mlaves/oct-classification-vae-regularization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Retinal OCT disease classification with variational autoencoder regularization

Max-Heinrich Laves, Sontje Ihler, Lüder A. Kahrs, Tobias Ortmaier

Code for our abstract paper accepted at 33rd international conference on Computer Assisted Radiology and Surgery (CARS) 2019.

Paper link: https://arxiv.org/pdf/1904.00790.pdf

Abstract

This paper describes a method based on variational autoencoder regularization that improves OCT retinal disease classification performance when using a limited amount of labeled data.

t-SNE
Figure 1: t-SNE projection of the latent space.

BibTeX

@inproceedings{Laves2019CARS,
    author = {Max-Heinrich Laves and Sontje Ihler and L{\"u}der A. Kahrs and Tobias Ortmaier},
    title = {Retinal OCT disease classification with variational autoencoder regularization},
    booktitle={arXiv},
    note = {https://arxiv.org/abs/1904.00790},
    year = {2019}
}

Contact

Max-Heinrich Laves
laves@imes.uni-hannover.de
@MaxLaves

Institute of Mechatronic Systems
Leibniz Universität Hannover
An der Universität 1, 30823 Garbsen, Germany

About

Code for CARS 2019 paper "Retinal OCT disease classification with variational autoencoder regularization".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published