the source code of paper, "Block Division Convolutional Network with Implicit Deep Features Augmentation for Micro-Expression Recognition."
Python==3.7.6
torch==1.8.1
torchvision==0.9.1
pandas
tqdm
sklearn
matplotlib
opencv_python==4.2.0.34
pickle
You may put the 3-class and 5-class data into the folder data.
The directory of data shall be represented as follows:
- 006
- Train
- img001.img
- ...
- label.txt
- test
- img001.img
- ...
- label.txt
- Train
- 007
...
Training the 3-class data by using the following command:
cd code
python train_split.py --model BDCNN --save_path result/BDCNN
Training the 5-class data by using the following command:
python train_5type_split.py --model BDCNN --save_path result/BDCNN_5type
Then you can run the result.py to get the result of acc,recall,F1,UF1, and UAR
python result.py --type 3_class --result_path result/BDCNN
python tsne.py --path result/BDCNN --foder 006 --name BDCNN