Skip to content
/ SCDM Public

Official PyTorch implementation of "Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis" (ICML 2024).

License

Notifications You must be signed in to change notification settings

mlvlab/SCDM

Repository files navigation

Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

Official PyTorch implementation of "Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis" (ICML 2024).

Juyeon Ko*, Inho Kong*, Dogyun Park, Hyunwoo J. Kim†.

Department of Computer Science and Engineering, Korea University

SCDM Framework

SCDM Motivation

PWC PWC PWC PWC PWC PWC

Setup

  • Clone repository

    git clone https://github.com/mlvlab/SCDM.git
    cd SCDM
  • Setup conda environment

    conda env create -f environment.yaml
    conda activate scdm

Dataset Preparation

Standard (clean) SIS

  • CelebAMask-HQ can be downloaded from CelebAMask-HQ. The dataset should be structured as below:

    CelebAMask/
    ├─ train/
    │  ├─ images/
    │  │  ├─ 0.jpg
    │  │  ├─ ...
    │  │  ├─ 27999.jpg
    │  ├─ labels/
    │  │  ├─ 0.png
    │  │  ├─ ...
    │  │  ├─ 27999.png
    ├─ test/
    │  ├─ images/
    │  │  ├─ 28000.jpg
    │  │  ├─ ...
    │  │  ├─ 29999.jpg
    │  ├─ labels/
    │  │  ├─ 28000.png
    │  │  ├─ ...
    │  │  ├─ 29999.png
    
  • ADE20K can be downloaded from MIT Scene Parsing Benchmark, and we followed SPADE for preparation. The dataset should be structured as below:

    ADE20K/
    ├─ ADEChallengeData2016/
    │  │  ├─ images/
    │  │  │  ├─ training/
    │  │  │  │  ├─ ADE_train_00000001.jpg
    │  │  │  │  ├─ ...
    │  │  │  ├─ validation/
    │  │  │  │  ├─ ADE_val_00000001.jpg
    │  │  │  │  ├─ ...
    │  │  ├─ annotations/
    │  │  │  ├─ training/
    │  │  │  │  ├─ ADE_train_00000001.png
    │  │  │  │  ├─ ...
    │  │  │  ├─ validation/
    │  │  │  │  ├─ ADE_val_00000001.png
    │  │  │  │  ├─ ...
    
  • COCO-STUFF can be downloaded from cocostuff, and we followed SPADE for preparation. The dataset should be structured as below:

    coco/
    ├─ train_img/
    │  ├─ 000000000009.jpg
    │  ├─ ...
    ├─ train_label/
    │  ├─ 000000000009.png
    │  ├─ ...
    ├─ train_inst/
    │  ├─ 000000000009.png
    │  ├─ ...
    ├─ val_img/
    │  ├─ 000000000139.jpg
    │  ├─ ...
    ├─ val_label/
    │  ├─ 000000000139.png
    │  ├─ ...
    ├─ val_inst/
    │  ├─ 000000000139.png
    │  ├─ ...
    

Noisy SIS dataset for evaluation

Our noisy SIS dataset for three benchmark settings (DS, Edge, and Random) based on ADE20K is available at Google Drive. You can also generate the same dataset by running Python codes at image_process/.

Experiments

You can set CUDA visible devices by VISIBLE_DEVICES=${GPU_ID}. (e.g., VISIBLE_DEVICES=0,1,2,3)

Training

  • Run

    sh scripts/train.sh
    
  • For more details, please refer to scripts/train.sh.

  • Pretrained models are available at Google Drive.

Sampling

  • Run

    sh scripts/sample.sh
    
  • For more details, please refer to scripts/sample.sh.

  • Our samples are available at Google Drive.

Evaluation

  • FID (fidelity)

    The code is based on OASIS.

    python evaluations/fid/tests_with_FID.py --path {SAMPLE_PATH} {GT_IMAGE_PATH} -b {BATCH_SIZE} --gpu {GPU_ID}
    
  • LPIPS (diversity)

    You should generate 10 sets of samples, and make lpips_list.txt with evaluations/lpips/make_lpips_list.py. The code is based on stargan-v2.

    python evaluations/lpips/lpips.py --root_path results/ade20k --test_list lpips_list.txt --batch_size 10
    
  • mIoU (correspondence)

    • CelebAMask-HQ: U-Net. Clone the repo and set up environments from imaginaire, and add evaluation/miou/test_celeba.py to imaginaire/. Check out evaluation/miou/celeba_config.yaml for the config file and fix the path accordingly.

      cd imaginaire
      python test_celeba.py
    • ADE20K: Vit-Adapter-S with UperNet. Clone the repo and set up environments from Vit-Adapter.

      cd ViT-Adapter/segmentation
      bash dist_test.sh \
           configs/ade20k/upernet_deit_adapter_small_512_160k_ade20k.py \
           pretrained/upernet_deit_adapter_small_512_160k_ade20k.pth \
           1 \ # NUM_GPUS
           --eval mIoU \
           --img_dir {SAMPLE_DIR} \
           --ann_dir {LABEL_DIR} \
           --root_dir {SAMPLE_ROOT_DIR}
    • COCO-STUFF: DeepLabV2. Clone the repo and set up environments from imaginaire, and add evaluation/miou/test_coco.py to imaginaire/. Check out evaluation/miou/coco_config.yaml for the config file and fix the path accordingly.

      cd imaginaire
      python test_coco.py

Acknowledgement

This repository is built upon guided-diffusion and SDM.

Citation

If you use this work, please cite as:

@article{ko2024stochastic,
  title={Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis},
  author={Ko, Juyeon and Kong, Inho and Park, Dogyun and Kim, Hyunwoo J},
  journal={arXiv preprint arXiv:2402.16506},
  year={2024}
}

Contact

Feel free to contact us if you need help or explanations!

About

Official PyTorch implementation of "Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis" (ICML 2024).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published