Skip to content

Creates tiles of satelite imagery and binary masks for machine learning

License

Notifications You must be signed in to change notification settings

mnboos/airtiler

Repository files navigation

Airtiler

Build Status

The airtiler generates training / test data for neural networks by downloading buildings from vector data from OpenStreetMap and the corresponding satellite images from Microsoft Bing Maps.

It then generates binary masks from the vector data which can be used for example for instance segmentation.

Examples

Instance Separation Image Mask
False
True

Installation

To install airtiler run:

pip install airtiler

Usage

airtiler -c sample_config.json

API

airtiler = Airtiler("bing_key")
airtiler.process(config)

Config

Key Required
options
boundingboxes Yes

Options (optional)

Key Description
target_dir The directory where the files will be written to
zoom_levels Global zoom levels which will be used, if a boundingbox if specified in short format or has no boundingboxes.
separate_instances If true, each building instance will be separated. Otherwise, a building consisting from multiple instances will be rendered as one.

Sample config

{
  "options": {
    "target_dir": "./output/blabla",
    "zoom_levels": [15, 16, 17],
    "separate_instances": false
  },
  "query": {
    "tags": ["highway", "building", "leisure=swimming_pool"]
  },
  "boundingboxes": {
    "firenze": [11.239844, 43.765851, 11.289969, 43.790065],
    "rapperswil": {
      "zoom_levels": [17, 18],
      "tr": 8.818724,
      "tl": 47.222126,
      "br": 8.847435,
      "bl": 47.234629
    },
    "new_york": {
      "tr": -74.02059,
      "tl": 40.646089,
      "br": -73.864722,
      "bl": 40.77413
    }
  }
}

Projects

The airtiler is used in the following projects:

About

Creates tiles of satelite imagery and binary masks for machine learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages