Skip to content

Attention Temporal Graph Convolutional Networks architecture on water distribution systems using Tensorflow

Notifications You must be signed in to change notification settings

mnguyen0226/a3tgcn_cps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Attention Temporal Graph Convolutional Network for Cyber Physical Attacks Detection

Supervised Model: Attention Temporal Graph Convolutional Networks.

1. Attacks Detection Scheme

alt-text

2. Reproducibility

- tensorflow == 1.14 (conda install -c conda-forge tensorflow=1.14)
- python == 3.7 
- scipy (conda install -c anaconda scipy)
- numpy (conda install -c anaconda numpy)
- matplotlib (conda install -c conda-forge matplotlib)
- pandas (conda install -c anaconda pandas)
- math
- sklearn (conda install -c anaconda scikit-learn)

3. A3T-GCN Architecture

alt-text

4. Results

BATADAL Ranking

Author Number of Attacks Detected S S_TTD S_CM TPR TNR
Housh and Ohar 7 0.97 0.965 0.975 0.953 0.997
Abokifa et al 7 0.949 0.958 0.944 0.921 0.959
HCAE 7 0.933 0.947 0.918 0.865 0.972
Tsiami et al 7 0.931 0.934 0.928 0.885 0.971
Giacomoni et al 7 0.927 0.936 0.917 0.838 0.997
Brentan et al 6 0.894 0.857 0.931 0.889 0.973
A3T-GCN 7 0.845 0.839 0.851 0.774 0.927
Chandy et al 7 0.802 0.835 0.768 0.857 0.678
Pasha et al 7 0.773 0.885 0.66 0.329 0.992
Aghashahi et al 3 0.534 0.429 0.64 0.396 0.884

Forecasting Performance on Normal Dataset

Baseline Model Robust Mahalanobis Distance, Attention
Minimum RMSE 6.858166163 5.960369429
Minimum MAE 3.3477044 2.7673762
Maximum Accuracy 0.8372700512 0.8585200906
R2 -0.6772449017 -0.6805173159
Variance 0.9530872479 0.9646917097

Attack Detection

Baseline Model Robust Mahalanobis Distance, Attention
Precision 0.6355932203 0.7208237986
Recall / True Positive Rate 0.5528255528 0.773955774
F1 Score 0.5913272011 0.7464454976
Accuracy 0.8496131528 0.8965183752
Specificity / True Negative 0.9223359422 0.9265502709

alt-text

alt-text

Attack Localization

Attacks Labels Attacks Description Feature Localization of A3T-GCN
Attack 8 Alteration of L_T3 thresholds leading to underflow P_J256 = 11, L_T3 = 3, P_J289 = 2, L_T2 = 2
Attack 9 Alteration of L_T2 P_J289 = 13, P_J422 = 13, P_J300 = 5, L_T7 = 2
Attack 10 Activation of PU3 F_PU3 = 38, P_J280 = 28, L_T7 = 23, L_T4 = 6, P_J269 = 6, F_PU1 = 8, F_PU9 = 2
Attack 11 Activation of PU3 F_PU3 = 36, P_J280 = 31, L_T7 = 23, F_PU1 = 22, L_T4 = 12, L_T6 = 11, P_J307 = 7, P_J415 = 3, F_PU6 = 2, P_J289 = 2
Attack 12 Alteration of L_T2 readings leading to overflow P_J289 = 7, P_J300 = 6, L_T2 = 2
Attack 13 Change the L_T7 thresholds L_T6 = 2
Attacls 17 Alteration of T4 signal L_T4 = 8, L_T7 = 5, P_J415 = 4, L_T6 = 2

5. References

Releases

No releases published

Packages

No packages published

Languages