python3.7
,latest
(Dockerfile)python3.6
(Dockerfile)python3.6-alpine3.8
(Dockerfile)python3.7-alpine3.8
(Dockerfile)
Note: Note: There are tags for each build date. If you need to "pin" the Docker image version you use, you can select one of those tags. E.g. tiangolo/uvicorn-gunicorn-fastapi:python3.7-2019-10-15
.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.7 and 3.6 with performance auto-tuning. Optionally with Alpine Linux.
GitHub repo: https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker
Docker Hub image: https://hub.docker.com/r/tiangolo/uvicorn-gunicorn-fastapi/
FastAPI has shown to be a Python web framework with one of the best performances, as measured by third-party benchmarks, thanks to being based on and powered by Starlette.
The achievable performance is on par with (and in many cases superior to) Go and Node.js frameworks.
This image has an "auto-tuning" mechanism included, so that you can just add your code and get that same high performance automatically. And without making sacrifices.
Uvicorn is a lightning-fast "ASGI" server.
It runs asynchronous Python web code in a single process.
You can use Gunicorn to manage Uvicorn and run multiple of these concurrent processes.
That way, you get the best of concurrency and parallelism.
FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+.
The key features are:
- Fast: Very high performance, on par with NodeJS and Go (thanks to Starlette and Pydantic).
- Fast to code: Increase the speed to develop features by about 300% to 500% *.
- Less bugs: Reduce about 40% of human (developer) induced errors. *
- Intuitive: Great editor support. Completion everywhere. Less time debugging.
- Easy: Designed to be easy to use and learn. Less time reading docs.
- Short: Minimize code duplication. Multiple features from each parameter declaration. Less bugs.
- Robust: Get production-ready code. With automatic interactive documentation.
- Standards-based: Based on (and fully compatible with) the open standards for APIs: OpenAPI (previously known as Swagger) and JSON Schema.
* estimation based on tests on an internal development team, building production applications.
This image will set a sensible configuration based on the server it is running on (the amount of CPU cores available) without making sacrifices.
It has sensible defaults, but you can configure it with environment variables or override the configuration files.
There is also an Alpine version. If you want it, use one of the Alpine tags from above.
This image (tiangolo/uvicorn-gunicorn-fastapi
) is based on tiangolo/uvicorn-gunicorn.
That image is what actually does all the work.
This image just installs FastAPI and has the documentation specifically targeted at FastAPI.
If you feel confident about your knowledge of Uvicorn, Gunicorn and ASGI, you can use that image directly.
There is a sibling Docker image: tiangolo/uvicorn-gunicorn-starlette
If you are creating a new Starlette web application and you want to discard all the additional features from FastAPI you should use tiangolo/uvicorn-gunicorn-starlette instead.
Note: FastAPI is based on Starlette and adds several features on top of it. Useful for APIs and other cases: data validation, data conversion, documentation with OpenAPI, dependency injection, security/authentication and others.
- You don't need to clone the GitHub repo. You can use this image as a base image for other images, using this in your
Dockerfile
:
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7
COPY ./app /app
It will expect a file at /app/app/main.py
.
Or otherwise a file at /app/main.py
.
And will expect it to contain a variable app
with your FastAPI application.
Then you can build your image from the directory that has your Dockerfile
, e.g:
docker build -t myimage ./
- Go to your project directory.
- Create a
Dockerfile
with:
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7
COPY ./app /app
- Create an
app
directory and enter in it. - Create a
main.py
file with:
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.get("/items/{item_id}")
def read_item(item_id: int, q: str = None):
return {"item_id": item_id, "q": q}
- You should now have a directory structure like:
.
├── app
│ └── main.py
└── Dockerfile
- Go to the project directory (in where your
Dockerfile
is, containing yourapp
directory). - Build your FastAPI image:
docker build -t myimage .
- Run a container based on your image:
docker run -d --name mycontainer -p 80:80 myimage
Now you have an optimized FastAPI server in a Docker container. Auto-tuned for your current server (and number of CPU cores).
You should be able to check it in your Docker container's URL, for example: http://192.168.99.100/items/5?q=somequery or http://127.0.0.1/items/5?q=somequery (or equivalent, using your Docker host).
You will see something like:
{"item_id": 5, "q": "somequery"}
Now you can go to http://192.168.99.100/docs or http://127.0.0.1/docs (or equivalent, using your Docker host).
You will see the automatic interactive API documentation (provided by Swagger UI):
And you can also go to http://192.168.99.100/redoc or http://127.0.0.1/redoc(or equivalent, using your Docker host).
You will see the alternative automatic documentation (provided by ReDoc):
These are the environment variables that you can set in the container to configure it and their default values:
The Python "module" (file) to be imported by Gunicorn, this module would contain the actual application in a variable.
By default:
app.main
if there's a file/app/app/main.py
ormain
if there's a file/app/main.py
For example, if your main file was at /app/custom_app/custom_main.py
, you could set it like:
docker run -d -p 80:80 -e MODULE_NAME="custom_app.custom_main" myimage
The variable inside of the Python module that contains the FastAPI application.
By default:
app
For example, if your main Python file has something like:
from fastapi import FastAPI
api = FastAPI()
@api.get("/")
def read_root():
return {"Hello": "World"}
In this case api
would be the variable with the FastAPI application. You could set it like:
docker run -d -p 80:80 -e VARIABLE_NAME="api" myimage
The string with the Python module and the variable name passed to Gunicorn.
By default, set based on the variables MODULE_NAME
and VARIABLE_NAME
:
app.main:app
ormain:app
You can set it like:
docker run -d -p 80:80 -e APP_MODULE="custom_app.custom_main:api" myimage
The path to a Gunicorn Python configuration file.
By default:
/app/gunicorn_conf.py
if it exists/app/app/gunicorn_conf.py
if it exists/gunicorn_conf.py
(the included default)
You can set it like:
docker run -d -p 80:80 -e GUNICORN_CONF="/app/custom_gunicorn_conf.py" myimage
This image will check how many CPU cores are available in the current server running your container.
It will set the number of workers to the number of CPU cores multiplied by this value.
By default:
1
You can set it like:
docker run -d -p 80:80 -e WORKERS_PER_CORE="3" myimage
If you used the value 3
in a server with 2 CPU cores, it would run 6 worker processes.
You can use floating point values too.
So, for example, if you have a big server (let's say, with 8 CPU cores) running several applications, and you have a FastAPI application that you know won't need high performance. And you don't want to waste server resources. You could make it use 0.5
workers per CPU core. For example:
docker run -d -p 80:80 -e WORKERS_PER_CORE="0.5" myimage
In a server with 8 CPU cores, this would make it start only 4 worker processes.
Note: By default, if WORKERS_PER_CORE
is 1
and the server has only 1 CPU core, instead of starting 1 single worker, it will start 2. This is to avoid bad performance and blocking applications (server application) on small machines (server machine/cloud/etc). This can be overridden using WEB_CONCURRENCY
.
Override the automatic definition of number of workers.
By default:
- Set to the number of CPU cores in the current server multiplied by the environment variable
WORKERS_PER_CORE
. So, in a server with 2 cores, by default it will be set to2
.
You can set it like:
docker run -d -p 80:80 -e WEB_CONCURRENCY="2" myimage
This would make the image start 2 worker processes, independent of how many CPU cores are available in the server.
The "host" used by Gunicorn, the IP where Gunicorn will listen for requests.
It is the host inside of the container.
So, for example, if you set this variable to 127.0.0.1
, it will only be available inside the container, not in the host running it.
It's is provided for completeness, but you probably shouldn't change it.
By default:
0.0.0.0
The port the container should listen on.
If you are running your container in a restrictive environment that forces you to use some specific port (like 8080
) you can set it with this variable.
By default:
80
You can set it like:
docker run -d -p 80:8080 -e PORT="8080" myimage
The actual host and port passed to Gunicorn.
By default, set based on the variables HOST
and PORT
.
So, if you didn't change anything, it will be set by default to:
0.0.0.0:80
You can set it like:
docker run -d -p 80:8080 -e BIND="0.0.0.0:8080" myimage
The log level for Gunicorn.
One of:
debug
info
warning
error
critical
By default, set to info
.
If you need to squeeze more performance sacrificing logging, set it to warning
, for example:
You can set it like:
docker run -d -p 80:8080 -e LOG_LEVEL="warning" myimage
The image includes a default Gunicorn Python config file at /gunicorn_conf.py
.
It uses the environment variables declared above to set all the configurations.
You can override it by including a file in:
/app/gunicorn_conf.py
/app/app/gunicorn_conf.py
/gunicorn_conf.py
If you need to run anything before starting the app, you can add a file prestart.sh
to the directory /app
. The image will automatically detect and run it before starting everything.
For example, if you want to add Alembic SQL migrations (with SQLALchemy), you could create a ./app/prestart.sh
file in your code directory (that will be copied by your Dockerfile
) with:
#! /usr/bin/env bash
# Let the DB start
sleep 10;
# Run migrations
alembic upgrade head
and it would wait 10 seconds to give the database some time to start and then run that alembic
command.
If you need to run a Python script before starting the app, you could make the /app/prestart.sh
file run your Python script, with something like:
#! /usr/bin/env bash
# Run custom Python script before starting
python /app/my_custom_prestart_script.py
The default program that is run is at /start.sh
. It does everything described above.
There's also a version for development with live auto-reload at:
/start-reload.sh
For development, it's useful to be able to mount the contents of the application code inside of the container as a Docker "host volume", to be able to change the code and test it live, without having to build the image every time.
In that case, it's also useful to run the server with live auto-reload, so that it re-starts automatically at every code change.
The additional script /start-reload.sh
runs Uvicorn alone (without Gunicorn) and in a single process.
It is ideal for development.
For example, instead of running:
docker run -d -p 80:80 myimage
You could run:
docker run -d -p 80:80 -v $(pwd):/app myimage /start-reload.sh
-v $(pwd):/app
: means that the directory$(pwd)
should be mounted as a volume inside of the container at/app
.$(pwd)
: runspwd
("print working directory") and puts it as part of the string.
/start-reload.sh
: adding something (like/start-reload.sh
) at the end of the command, replaces the default "command" with this one. In this case, it replaces the default (/start.sh
) with the development alternative/start-reload.sh
.
As /start-reload.sh
doesn't run with Gunicorn, any of the configurations you put in a gunicorn_conf.py
file won't apply.
But these environment variables will work the same as described above:
MODULE_NAME
VARIABLE_NAME
APP_MODULE
HOST
PORT
LOG_LEVEL
All the image tags, configurations, environment variables and application options are tested.
- Refactor tests to use env vars and add image tags for each build date, like
tiangolo/uvicorn-gunicorn-fastapi:python3.7-2019-10-15
. PR #17. - Upgrade Travis. PR #9.
- Add support for live auto-reload with an additional custom script
/start-reload.sh
, check the updated documentation. PR #6 in parent image.
- Set
WORKERS_PER_CORE
by default to1
, as it shows to have the best performance on benchmarks. - Make the default web concurrency, when
WEB_CONCURRENCY
is not set, to a minimum of 2 workers. This is to avoid bad performance and blocking applications (server application) on small machines (server machine/cloud/etc). This can be overridden usingWEB_CONCURRENCY
. This applies for example in the case whereWORKERS_PER_CORE
is set to1
(the default) and the server has only 1 CPU core. PR #6 and PR #5 in parent image.
- Make
/start.sh
run independently, reading and generating used default environment variables. And remove/entrypoint.sh
as it doesn't modify anything in the system, only reads environment variables. PR #4 in parent image.
- Add support for
/app/prestart.sh
.
This project is licensed under the terms of the MIT license.