Skip to content

mori97/U-Net_MUSDB18

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

U-Net_MUSDB18

デモページ(demo)

Implementation of U-Net for music separation.

MUSDB18 dataset is used for training and evaluation. You can download it here (access request is necessary).

Prerequisites

  • librosa >= 0.7.0
  • numpy >= 1.16.0
  • pysoundfile >= 0.10.0
  • pytorch >= 1.2.0
  • tensorboard >= 1.14.0
  • torchaudio >= 0.3.0

and ffmpeg should be installed to do the preprocessing.

Usage

The original MUSDB18 dataset consists of .mp4 files. First, convert the whole dataset into .wav format for convenience.

$ python convert_to_wav.py --sr 22050 {your_path}/musdb18 {your_path}/musdb18_wav_22050

Then train the model by train.py. For example,

$ python train.py --dataset {your_path}/musdb18_wav_22050 \
                  --gpu 0 1 2 3 \
                  --batch-size 256 \
                  --output ./model

Help message of commandline arguments can be found by

$ python train.py -h

You can use separate.py to test your model.

About

Music separation using U-Net and MUSDB18 dataset.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages