-
Notifications
You must be signed in to change notification settings - Fork 1
motion-planning/pqp
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Copyright 1999 University of North Carolina at Chapel Hill. All rights reserved. Permission to use, copy, modify, and distribute this software and its documentation for educational, research, and non-profit purposes, without fee, and without a written agreement is hereby granted, provided that the above copyright notice and the following three paragraphs appear in all copies. IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. The authors may be contacted via: US Mail: Eric Larsen, Stefan Gottschalk Department of Computer Science Sitterson Hall, CB #3175 University of North Carolina Chapel Hill, NC 27599-3175 Phone: (919) 962-1749 Email: geom@cs.unc.edu --------------------------------------------------------------------------- PQP v. 1.3 Eric Larsen, Stefan Gottschalk UNC - Chapel Hill Computer Science geom@cs.unc.edu --------------------------------------------------------------------------- Changes: 1.0 - first release of library 1.1 - fixed a bug in calculating query times on Win32 machines. added a demo 'falling' which can demonstrate all of the proximity query types. 1.2 - altered the triangle distance routine due to a degeneracy problem when edges of two triangles nearly intersect. 1.3 - now use isnan() to test for NaN, instead of a comparison that was sometimes optimized away. --------------------------------------------------------------------------- I. Introduction PQP, which stands for Proximity Query Package, is a library for three types of proximity queries performed on geometric models composed of triangles: * collision detection - detect whether two models overlap, and optionally, which triangles of the models overlap. * distance computation - compute the distance between two models, i. e., the length of the shortest translation that makes the models overlap * tolerance verification - detect whether two models are closer or farther than a tolerance value. By default, the library uses "RSS" bounding volumes for distance and tolerance queries, and OBBs for collision detection (see PQP_Compile.h). Descriptions of the bounding volumes and algorithms used in this package are contained in: Eric Larsen, Stefan Gottschalk, Ming Lin, Dinesh Manocha, "Fast Proximity Queries with Swept Sphere Volumes", Technical report TR99-018, Department of Computer Science, UNC Chapel Hill S. Gottschalk, M. C. Lin and D. Manocha, "OBB-Tree: A Hierarchical Structure for Rapid Interference Detection", Technical report TR96-013, Department of Computer Science, University of N. Carolina, Chapel Hill. Proc. of ACM Siggraph'96. II. Layout of Files PQP_v1.3/ Makefile Unix makefile to build PQP library PQP.dsw PQP.dsp MS VC++ 5.0 workspace and project files for PQP src/ PQP source lib/ libPQP.a after Unix compilation PQP.lib after Win32 compilation include/ PQP.h include this file to use PQP classes and functions. PQP_Internal.h PQP_Compile.h *WARNING* you should only modify PQP_Compile.h in Tri.h the src directory, not here, because these files BV.h are copied here from src when you perform a build demos/ Makefile Unix makefile for both demos demos.dsw MS VC++ 5.0 workspace for demos falling/ source and project files sample/ " " " " spinning/ " " " " III. Building the PQP Library In the top level directory, there is a Unix Makefile for building the PQP library. Type 'make' to create a 'libPQP.a' in the lib directory. The compiler is currently set to g++ with -O2 level optimization. In Visual C++ 5.0 or higher, open PQP.dsw to build the library. Building on either platform has a side effect of copying the include files needed for a client application to the include/ directory. IV. Building the Demos In the demos directory is a Unix Makefile. Typing 'make' will perform a 'make' in the 'sample' and 'spinning' directories. For VC++5.0 users, the demos directory contains a demos.dsw file which contains projects for both demos. sample This demo is adapted from the sample client included with RAPID. Two tori are created, and proximity queries are performed on them at several configurations spinning The spinning demo is a GLUT application, so paths to the GLUT & OpenGL libraries and includes must be set in spinning/Makefile, or in the VC++ project settings. When run, a bunny and a torus should appear in the GLUT window, with a line drawn between their closest points. Pressing a key alternately starts and stops them spinning. falling This demo is also a GLUT application, showing a bent torus falling through the center of a knobby torus. Each of the three proximity query types can be demonstrated. V. Creating a PQP Client Application "PQP.h" contains the most complete information on constructing client applications. Here is a summary of the steps involved. 1. Include the PQP API header. #include "PQP.h" 2. Create two instances of PQP_Model. PQP_Model m1, m2; 3. Specify the triangles of each PQP_Model. Note that PQP uses the PQP_REAL type for all its floating point values. This can be set in "PQP_Compile.h", and is "double" by default // begin m1 m1.BeginModel(); // create some triangles PQP_REAL p1[3], p2[3], p3[3]; PQP_REAL q1[3], q2[3], q3[3]; PQP_REAL r1[3], r2[3], r3[3]; // initialize the points . . . // add triangles that will belong to m1 m1.AddTri(p1, p2, p3, 0); m1.AddTri(q1, q2, q3, 1); m1.AddTri(r1, r2, r3, 2); // end m1, which builds the model m1.EndModel(); 4. Specify the orientation and position of each model. The position of a model is specified as a 3 vector giving the position of its frame in the world, stored in a PQP_REAL [3]. The rotation for a model is specified as a 3x3 matrix, whose columns are the model frame's basis vectors, stored in row major order in a PQP_REAL [3][3]; Note that an OpenGL 4x4 matrix has column major storage. 5. Perform any of the three proximity queries. // collision PQP_CollideResult cres; PQP_Collide(&cres,R1,T1,&m1,R2,T2,&m2); // distance PQP_DistanceResult dres; double rel_err = 0.0, abs_err = 0.0; PQP_Distance(&dres,R1,T1,&m1,R2,T2,&m2,rel_err,abs_err); // tolerance PQP_ToleranceResult tres; double tolerance = 1.0; PQP_Tolerance(&tres,R1,T1,&m1,R2,T2,&m2,tolerance); See "PQP.h" for complete information. 6. Access the result structure passed in the query call. int colliding = cres.Colliding(); double distance = dres.Distance(); int closer = tres.CloserThanTolerance(); See "PQP.h" for the complete interface to each result structure.
About
Proximity Query Package
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published