Skip to content

motokiomura/DQNs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DQNs

Implementation of DQNs.

Environment : OpenAI Gym Atari 2600 games

Papers

DQN : Playing Atari with Deep Reinforcement Learning

Double DQN : Deep Reinforcement Learning with Double Q-learning

Prioritized Replay : PRIORITIZED EXPERIENCE REPLAY

Dueling Network : Dueling Network Architectures for Deep Reinforcement Learning

Ape-X DQN : DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY

Usage

$ python dqn_atari.py --prioritized --double --dueling --n_step 3

--prioritezed: Prioritized Experience Replay

--double: Double Deep Q Learning (DDQN)

--dueling: Dueling Network

--n_step <int>: Multi-step bootstrap target

Other arguments are described in dqn_atari.py

Ape-X DQN

See https://github.com/omurammm/apex_dqn

Results

After 12,000 episodes (Ape-X DQN)

apex

Learning curves

2018-06-20 14 38 05