-
Notifications
You must be signed in to change notification settings - Fork 58
/
azimuthal.py
724 lines (581 loc) · 30.1 KB
/
azimuthal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# -*- coding: utf-8 -*-
u'''Azimuthal projection classes L{Equidistant}, L{EquidistantKarney}, L{Gnomonic},
L{LambertEqualArea}, L{Orthographic}, L{Stereographic} and L{AzimuthalError} and
function L{equidistant}.
L{EquidistantKarney} uses ellipsoidal formulas and requires I{Charles Karney's}
Python implementation of U{GeographicLib<https://PyPI.org/project/geographiclib/>}
package to be installed.
Other azimuthal classes implement only (**) U{Snyder's FORMULAS FOR THE SPHERE
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and use those for any datum,
spherical and ellipsoidal. The radius used for the latter is the ellipsoid's
I{mean radius of curvature} at the latitude of the projection center point. For
further justification, see the first paragraph under U{Snyder's FORMULAS FOR THE
ELLIPSOID, page 197<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>}.
Page numbers in C{Snyder} references apply to U{John P. Snyder, "Map Projections
-- A Working Manual", 1987<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>}
@newfield example: Example, Examples
'''
from pygeodesy.basics import EPS, EPS1, PI, PI_2, property_doc_, \
property_RO, _xinstanceof, _xkwds
from pygeodesy.ellipsoidalBase import LatLonEllipsoidalBase as _LLEB
from pygeodesy.datum import Datum, Datums, _spherical_datum
from pygeodesy.errors import _datum_datum, _ValueError
from pygeodesy.interns import _azimuth_, _COMMA_SPACE_, _datum_, _lat_, \
_lat0_, _lon_, _lon0_, _name_, NN, \
_scale_, _SPACE_, _x_, _y_
from pygeodesy.karney import _norm180
from pygeodesy.latlonBase import LatLonBase as _LLB
from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _FOR_DOCS
from pygeodesy.named import LatLon2Tuple, LatLon4Tuple, _NamedBase, \
_NamedTuple, _xnamed
from pygeodesy.streprs import strs
from pygeodesy.units import Bearing, Lat, Lon, Scalar, Scalar_
from pygeodesy.utily import asin1, atan2d, sincos2, sincos2d
from math import acos, asin, atan, atan2, degrees, hypot, sin, sqrt
__all__ = _ALL_LAZY.azimuthal
__version__ = '20.07.27'
class _AzimuthalBase(_NamedBase):
'''(INTERNAL) Base class for azimuthal projections.
@see: Karney's C++ class U{AzimuthalEquidistant
<https://GeographicLib.SourceForge.io/1.49/classGeographicLib_1_1AzimuthalEquidistant.html>}
or L{EquidistantKarney}.
'''
_datum = Datums.WGS84 #: (INTERNAL) L{Datum}.
_latlon0 = () #: (INTERNAL) lat0, lon0 (L{LatLon2Tuple}).
_radius = None #: (INTERNAL) Geodentric radius (L{Radius}).
_sc0 = () #: (INTERNAL) 2-Tuple C{sincos2(lat0)}.
def __init__(self, lat0, lon0, datum=None, name=NN):
'''New azimuthal projection.
@arg lat0: Latitude of center point (C{degrees90}).
@arg lon0: Longitude of center point (C{degrees180}).
@kwarg datum: Optional datum (C{Datum}) or the radius of
the I{spherical} earth (C{meter}).
@kwarg name: Optional name for the projection (C{str}).
@raise RangeError: Invalid B{C{lat0}} or B{C{lon0}}.
@raise UnitError: Invalid B{C{lat0}}, B{C{lon0}} or B{C{datum}}.
'''
if name:
self.name = name
if datum:
d = datum if isinstance(datum, Datum) else \
_spherical_datum(datum, name=name)
if self._datum != d:
self._datum = d
self.reset(lat0, lon0)
@property_RO
def datum(self):
'''Get the datum (L{Datum}).
'''
return self._datum
@property_RO
def equatoradius(self):
'''Get the geodesic's equatorial (major) radius, semi-axis (C{meter}).
'''
return self.datum.ellipsoid.a
majoradius = equatoradius # for compatibility
@property_RO
def flattening(self):
'''Get the geodesic's flattening (C{float}).
'''
return self.datum.ellipsoid.f
def _forward(self, lat, lon, name, _k_t):
'''(INTERNAL) Azimuthal (spherical) forward C{lat, lon} to C{x, y}.
'''
sa, ca, sb, cb = sincos2d(Lat(lat), Lon(lon) - self.lon0)
s0, c0 = self._sc0
k, t = _k_t(s0 * sa + c0 * ca * cb)
if t:
r = k * self.radius
x = r * ca * sb
y = r * (c0 * sa - s0 * ca * cb)
z = atan2d(x, y) # (x, y) for azimuth from true North
else: # 0 or 180
x = y = z = 0
t = Azimuthal7Tuple(x, y, lat, lon, z, k, self.datum)
return _xnamed(t, name or self.name)
@property_RO
def lat0(self):
'''Get the center latitude (C{degrees90}).
'''
return self._latlon0.lat
@property
def latlon0(self):
'''Get the center lat- and longitude (L{LatLon2Tuple}C{(lat, lon)}) in (C{degrees90}, C{degrees180}).
'''
return self._latlon0
@latlon0.setter # PYCHOK setter!
def latlon0(self, latlon0):
'''Set the center lat- and longitude (C{LatLon}, L{LatLon2Tuple} or L{LatLon4Tuple}).
@raise AzimuthalError: Ellipsoidal mismatch of B{C{latlon0}} and this projection.
@raise RangeError: Invalid B{C{lat0}} or B{C{lon0}}.
@raise UnitError: Invalid B{C{lat0}} or B{C{lon0}}.
'''
B = _LLEB if self.datum.isEllipsoidal else _LLB
_xinstanceof(B, LatLon2Tuple, LatLon4Tuple, latlon0=latlon0)
if hasattr(latlon0, _datum_):
_datum_datum(self.datum, latlon0.datum, Error=AzimuthalError)
self.reset(latlon0.lat, latlon0.lon)
@property_RO
def lon0(self):
'''Get the center longitude (C{degrees180}).
'''
return self._latlon0.lon
@property_RO
def radius(self):
'''Get this projection's mean radius of curvature (C{meter}).
'''
if self._radius is None:
self._radius = self.datum.ellipsoid.rocMean(self.lat0)
return self._radius
def reset(self, lat0, lon0):
'''Set or reset the center point of this azimuthal projection.
@arg lat0: Center point latitude (C{degrees90}).
@arg lon0: Center point longitude (C{degrees180}).
@raise RangeError: Invalid B{C{lat0}} or B{C{lon0}}.
@raise UnitError: Invalid B{C{lat0}} or B{C{lon0}}.
'''
self._latlon0 = LatLon2Tuple(Lat( lat0, name=_lat0_),
Lon(_norm180(lon0), name=_lon0_))
self._sc0 = tuple(sincos2d(self.lat0))
self._radius = None
def _reverse(self, x, y, name, LatLon, LatLon_kwds, _c_t, lea):
'''(INTERNAL) Azimuthal (spherical) reverse C{x, y} to C{lat, lon}.
'''
x = Scalar(x, name=_x_)
y = Scalar(y, name=_y_)
r = hypot(x, y)
c, t = _c_t(r / self.radius)
if t:
s0, c0 = self._sc0
sc, cc = sincos2(c)
k = c / sc
z = atan2d(x, y) # (x, y) for azimuth from true North
lat = degrees(asin1(s0 * cc + c0 * sc * (y / r)))
if lea or abs(c0) > EPS:
lon = atan2(x * sc, c0 * cc * r - s0 * sc * y)
else:
lon = atan2(x, (y if s0 < 0 else -y))
lon = _norm180(self.lon0 + degrees(lon))
else:
k, z = 1, 0
lat, lon = self.latlon0
t = self._toLatLon(lat, lon, LatLon, LatLon_kwds) if LatLon else \
Azimuthal7Tuple(x, y, lat, lon, z, k, self.datum)
return _xnamed(t, name or self.name)
def _toLatLon(self, lat, lon, LatLon, LatLon_kwds):
'''(INTERNAL) Check B{C{LatLon}} and return an instance.
'''
kwds = _xkwds(LatLon_kwds, datum=self.datum)
r = LatLon(lat, lon, **kwds) # handle .classof
B = _LLEB if self.datum.isEllipsoidal else _LLB
_xinstanceof(B, LatLon=r)
return r
def toRepr(self, prec=6, **unused): # PYCHOK expected
'''Return a string representation of this projection.
@kwarg prec: Optional number of decimals, unstripped (C{int}).
@return: This projection as C{"<classname>(lat0, lon0, ...)"}
(C{str}).
'''
t = self.toStr(prec=prec, sep=_COMMA_SPACE_)
n = self.name or NN
if n:
n = ', %s=%r' % (_name_, n)
return '%s(%s%s)' % (self.classname, t, n)
def toStr(self, prec=6, sep=_SPACE_, **unused): # PYCHOK expected
'''Return a string representation of this projection.
@kwarg prec: Optional number of decimal, unstripped (C{int}).
@kwarg sep: Optional separator to join (C{str}).
@return: This projection as C{"lat0 lon0"} (C{str}).
'''
return sep.join(strs(self.latlon0, prec=prec))
class AzimuthalError(_ValueError):
'''An azimuthal L{Equidistant}, L{EquidistantKarney}, L{Gnomonic},
L{LambertEqualArea}, L{Orthographic} or L{Stereographic} issue.
'''
pass
class Azimuthal7Tuple(_NamedTuple):
'''7-Tuple C{(x, y, lat, lon, azimuth, scale, datum)}, in C{meter},
C{meter}, C{degrees90}, C{degrees180}, C{degrees360}, C{float} and
C{Datum} where C{(x, y)} is the projected, C{(lat, lon)} the geodetic
location, C{azimuth} the azimuth direction clockwise from true North
and C{scale} is the projection scale, either (C{1 / reciprocal} or
C{1} or C{-1} in one case, L{Equidistant}).
'''
_Names_ = (_x_, _y_, _lat_, _lon_, _azimuth_, _scale_, _datum_)
def __new__(cls, x, y, lat, lon, azi, s, datum):
return _NamedTuple.__new__(cls, Scalar(x, name=_x_, Error=AzimuthalError),
Scalar(y, name=_y_, Error=AzimuthalError), # PYCHOK indent
Lat(lat, Error=AzimuthalError),
Lon(lon, Error=AzimuthalError),
Bearing(azi, name=_azimuth_, Error=AzimuthalError),
Scalar(s, name=_scale_, Error=AzimuthalError), datum)
class Equidistant(_AzimuthalBase):
'''Azimuthal equidistant projection for the sphere**, see U{Snyder, pp 195-197
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and U{MathWorld-Wolfram
<https://MathWorld.Wolfram.com/AzimuthalEquidistantProjection.html>}.
'''
if _FOR_DOCS:
__init__ = _AzimuthalBase.__init__
def forward(self, lat, lon, name=NN):
'''Convert a geodetic location to azimuthal equidistant east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)} with C{x}
and C{y} in C{meter} and C{lat} and C{lon} in C{degrees}. The C{scale}
of the projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction perpendicular
to this.
@note: The C{scale} will be C{-1} if B{C{(lat, lon)}} is antipodal to the
projection center C{(lat0, lon0)}.
'''
def _k_t(c):
t = abs(c) < EPS1
if t:
c = acos(c) # XXX .utily.acos1
k = c / sin(c)
else:
k = -1 if c < 0 else 1 # int(copysign(1, c))
return k, t
return self._forward(lat, lon, name, _k_t)
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal equidistant location to geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The C{scale} of the
projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction
perpendicular to this.
'''
def _c_t(c):
return c, (c > EPS)
return self._reverse(x, y, name, LatLon, LatLon_kwds, _c_t, False)
def equidistant(lat0, lon0, datum=Datums.WGS84, name=NN):
'''If Karney's U{geographiclib<https://PyPI.org/project/geographiclib>}
package is installed, return an L{EquidistantKarney} otherwise an
L{Equidistant} instance.
@arg lat0: Latitude of center point (C{degrees90}).
@arg lon0: Longitude of center point (C{degrees180}).
@kwarg datum: Optional datum (C{Datum}) or the radius of
the I{spherical} earth (C{meter}).
@kwarg name: Optional name for the projection (C{str}).
@return: An L{EquidistantKarney} or L{Equidistant} instance.
@raise RangeError: Invalid B{C{lat0}} or B{C{lon0}}.
@raise UnitError: Invalid B{C{lat0}}, B{C{lon0}} or B{C{datum}}.
'''
try:
return EquidistantKarney(lat0, lon0, datum=datum, name=name)
except ImportError:
return Equidistant(lat0, lon0, datum=datum, name=name) # PYCHOK expected
class EquidistantKarney(_AzimuthalBase):
'''Azimuthal equidistant projection, a Python version of Karney's C++ class U{AzimuthalEquidistant
<https://GeographicLib.SourceForge.io/1.49/classGeographicLib_1_1AzimuthalEquidistant.html>},
requiring package U{geographiclib<https://PyPI.org/project/geographiclib>} to be installed.
An azimuthal equidistant projection is centered at an arbitrary position on the ellipsoid.
For a point in projected space C{(x, y)}, the geodesic distance from the center position
is C{hypot(x, y)} and the C{azimuth} of the geodesic from the center point is C{atan2(x, y)},
clockwise from true North.
The C{.forward} and C{.reverse} methods also return the C{azimuth} of the geodesic at C{(x,
y)} and the C{scale} in the azimuthal direction which, together with the basic properties
of the projection, serve to specify completely the local affine transformation between
geographic and projected coordinates.
'''
_eps = sqrt(EPS) * 0.01
_mask = 0
def __init__(self, lat0, lon0, datum=Datums.WGS84, name=NN):
'''New azimuthal L{EquidistantKarney} projection.
@arg lat0: Latitude of center point (C{degrees90}).
@arg lon0: Longitude of center point (C{degrees180}).
@kwarg datum: Optional (ellipsoidal) datum (C{Datum}).
@kwarg name: Optional name for the projection (C{str}).
@raise ImportError: Package U{GeographicLib<https://PyPI.org/
project/geographiclib>} missing.
@raise RangeError: Invalid B{C{lat0}} or B{C{lon0}}.
@raise UnitError: Invalid B{C{lat0}} or B{C{lon0}}.
'''
_AzimuthalBase.__init__(self, lat0, lon0, datum=datum, name=name)
g = self.geodesic
self._mask = g.AZIMUTH | g.DISTANCE | g.LATITUDE | g.LONGITUDE| g.REDUCEDLENGTH
def forward(self, lat, lon, name=NN):
'''Convert an (ellipsoidal) geodetic location to azimuthal equidistant east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale,
datum)} with C{x} and C{y} in C{meter} and C{lat} and
C{lon} in C{degrees}. The C{scale} of the projection
is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the
direction perpendicular to this.
@see: Method L{EquidistantKarney.reverse}. A call to C{.forward}
followed by a call to C{.reverse} will return the original
C{lat, lon} to within roundoff.
'''
r = self.geodesic.Inverse(self.lat0, self.lon0, Lat(lat), Lon(lon), self._mask)
x, y = sincos2d(r.azi1)
t = Azimuthal7Tuple(x * r.s12, y * r.s12, r.lat2, r.lon2, r.azi2, self._1_rk(r), self.datum)
return _xnamed(t, name or self.name)
@property_RO
def geodesic(self):
'''Get this projection's I{wrapped} U{Karney Geodesic
<https://GeographicLib.SourceForge.io/html/python/code.html>},
provided package U{geographiclib
<https://PyPI.org/project/geographiclib>} is installed.
'''
return self.datum.ellipsoid.geodesic
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal equidistant location to (ellipsoidal) geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The scale of the projection
is C{1} in I{radial} direction, C{azimuth} clockwise from true
North and is C{1 / reciprocal} in the direction perpendicular
to this.
'''
x = Scalar(x, name=_x_)
y = Scalar(y, name=_y_)
z = atan2d(x, y) # (x, y) for azimuth from true North
s = hypot( x, y)
r = self.geodesic.Direct(self.lat0, self.lon0, z, s, self._mask)
t = self._toLatLon(r.lat2, r.lon2, LatLon, LatLon_kwds) if LatLon else \
Azimuthal7Tuple(x, y, r.lat2, r.lon2, r.azi2, self._1_rk(r), self.datum)
return _xnamed(t, name or self.name)
def _1_rk(self, r):
'''(INTERNAL) Compute the reciprocal, azimuthal scale.
'''
return (r.m12 / r.s12) if r.a12 > self._eps else 1
class Gnomonic(_AzimuthalBase):
'''Azimuthal gnomonic projection for the sphere**, see U{Snyder, pp 164-168
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and U{MathWorld-Wolfram
<https://MathWorld.Wolfram.com/GnomonicProjection.html>}.
'''
if _FOR_DOCS:
__init__ = _AzimuthalBase.__init__
def forward(self, lat, lon, name=NN):
'''Convert a geodetic location to azimuthal equidistant east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)} with C{x}
and C{y} in C{meter} and C{lat} and C{lon} in C{degrees}. The C{scale}
of the projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction perpendicular
to this.
'''
def _k_t(c):
t = c > EPS
if t:
k = 1 / c
else:
k = 1
return k, t
return self._forward(lat, lon, name, _k_t)
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal equidistant location to geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The C{scale} of the
projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction
perpendicular to this.
'''
def _c_t(c):
return atan(c), (c > EPS)
return self._reverse(x, y, name, LatLon, LatLon_kwds, _c_t, False)
class LambertEqualArea(_AzimuthalBase):
'''Lambert-equal-area projection for the sphere**, see U{Snyder, pp 185-187
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and U{MathWorld-Wolfram
<https://MathWorld.Wolfram.com/LambertAzimuthalEqual-AreaProjection.html>}.
'''
if _FOR_DOCS:
__init__ = _AzimuthalBase.__init__
def forward(self, lat, lon, name=NN):
'''Convert a geodetic location to azimuthal Lambert-equal-area east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)} with C{x}
and C{y} in C{meter} and C{lat} and C{lon} in C{degrees}. The C{scale}
of the projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction perpendicular
to this.
'''
def _k_t(c):
c = c + 1
t = c > EPS
if t:
k = sqrt(2 / c)
else:
k = 1
return k, t
return self._forward(lat, lon, name, _k_t)
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal Lambert-equal-area location to geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The C{scale} of the
projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction
perpendicular to this.
'''
def _c_t(c):
c = c / 2
t = c > EPS
if t:
c = PI if c > EPS1 else (2 * asin(c)) # utily.asin1
return c, t
return self._reverse(x, y, name, LatLon, LatLon_kwds, _c_t, True)
class Orthographic(_AzimuthalBase):
'''Orthographic projection for the sphere**, see U{Snyder, pp 148-153
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and U{MathWorld-Wolfram
<https://MathWorld.Wolfram.com/OrthographicProjection.html>}.
'''
if _FOR_DOCS:
__init__ = _AzimuthalBase.__init__
def forward(self, lat, lon, name=NN):
'''Convert a geodetic location to azimuthal orthographic east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)} with C{x}
and C{y} in C{meter} and C{lat} and C{lon} in C{degrees}. The C{scale}
of the projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction perpendicular
to this.
'''
def _k_t(c):
return 1, (c >= 0)
return self._forward(lat, lon, name, _k_t)
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal orthographic location to geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The C{scale} of the
projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction
perpendicular to this.
'''
def _c_t(c):
t = c > EPS
if t:
c = PI_2 if c > EPS1 else asin(c) # utily.asin1
return c, t
return self._reverse(x, y, name, LatLon, LatLon_kwds, _c_t, False)
class Stereographic(_AzimuthalBase):
'''Stereographic projection for the sphere**, see U{Snyder, pp 157-160
<https://pubs.er.USGS.gov/djvu/PP/PP_1395.pdf>} and U{MathWorld-Wolfram
<https://MathWorld.Wolfram.com/StereographicProjection.html>}.
'''
_k0 = 1 #: Central scale factor (C{scalar}).
if _FOR_DOCS:
__init__ = _AzimuthalBase.__init__
def forward(self, lat, lon, name=NN):
'''Convert a geodetic location to azimuthal stereographic east- and northing.
@arg lat: Latitude of the location (C{degrees90}).
@arg lon: Longitude of the location (C{degrees180}).
@kwarg name: Optional name for the location (C{str}).
@return: An L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)} with C{x}
and C{y} in C{meter} and C{lat} and C{lon} in C{degrees}. The C{scale}
of the projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction perpendicular
to this.
'''
def _k_t(c):
c = c + 1
t = abs(c) > EPS
if t:
k = 2 * self._k0 / c
else:
k = 1
return k, t
return self._forward(lat, lon, name, _k_t)
@property_doc_('''optional, central scale factor (C{scalar}).''')
def k0(self):
'''Get the central scale factor (C{scalar}).
'''
return self._k0
@k0.setter # PYCHOK setter!
def k0(self, factor):
'''Set the central scale factor (C{scalar}).
'''
n = Stereographic.k0.fget.__name__
self._k0 = Scalar_(factor, name=n, low=EPS, high=2) # XXX high=1, 2, other?
def reverse(self, x, y, name=NN, LatLon=None, **LatLon_kwds):
'''Convert an azimuthal stereographic location to geodetic lat- and longitude.
@arg x: Easting of the location (C{meter}).
@arg y: Northing of the location (C{meter}).
@kwarg name: Optional name for the location (C{str}).
@kwarg LatLon: Class to use (C{LatLon}) or C{None}.
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
arguments, ignored if B{C{LatLon=None}}.
@return: The geodetic (C{LatLon}) of if B{C{LatLon}} is C{None} an
L{Azimuthal7Tuple}C{(x, y, lat, lon, azimuth, scale, datum)}.
@note: The C{lat} will be in the range C{[-90..90] degrees} and C{lon}
in the range C{[-180..180] degrees}. The C{scale} of the
projection is C{1} in I{radial} direction, C{azimuth} clockwise
from true North and is C{1 / reciprocal} in the direction
perpendicular to this.
'''
def _c_t(c):
t = c > EPS
if t:
c = 2 * atan2(c, 2 * self._k0)
return c, t
return self._reverse(x, y, name, LatLon, LatLon_kwds, _c_t, False)
__all__ += _ALL_DOCS(Azimuthal7Tuple, _AzimuthalBase)
# **) MIT License
#
# Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.